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Introduction
~ Where does the solar butterfly comes from ? ~



8 Paul Charbonneau

• Sunspots emerge closer and closer to the equator in the course of a cycle, peaking in coverage
at about ±15◦ of latitude.

Sunspots appear when deep-seated toroidal flux ropes rise through the convective envelope and
emerge at the photosphere. Assuming that they rise radially and are formed where the magnetic
field is the strongest, the sunspot butterfly diagram can be interpreted as a spatio-temporal “map”
of the Sun’s internal, large-scale toroidal magnetic field component. This interpretation is not
unique, however, since the aforementioned assumptions are questionable. In particular, we still
lack even rudimentary understanding of the process through which the diffuse, large-scale solar
magnetic field produces the concentrated toroidal flux ropes that will later give rise to sunspots
upon buoyant destabilisation. This remains perhaps the most severe missing link between dynamo
models and solar magnetic field observations. On the other hand, the stability and rise of toroidal
flux ropes is now fairly well-understood (see, e.g., Fan, 2004, and references therein). In fact, from
the point of view of solar cycle modelling this represents perhaps the most significant advance of
the past two decades.

Figure 3: The sunspot “butterfly diagram”, showing the fractional coverage of sunspots as a
function of solar latitude and time (courtesy of D. Hathaway).

Magnetographic mapping of the Sun’s surface magnetic field (see Figure 4) have also revealed
that the Sun’s poloidal magnetic component undergoes cyclic variations, changing polarities at
times of sunspot maximum. Note on Figure 4 the poleward drift of the surface fields, away from
sunspot latitudes. This pattern can be given two interpretations:

• It reflects the existence of a mid-to-high-latitude dynamo “branch” that, somehow, fails to
produce full-blown sunspots.

• The surface fields originates from the transport of magnetic flux released by the decay of
sunspots at low latitudes.

Observational evidence currently favors the second of these possibilities (but do see Petrovay and
Szakály, 1999).

1.5 Organization of review

The remainder of this review is organized in five sections. In Section 2 the mathematical formula-
tion of the solar dynamo problem is laid out in some detail, together with the various simplifications
that are commonly used in modelling. Section 3 details various possible physical mechanisms of
magnetic field generation. In Section 4, a selection of representative models relying on different
such mechanisms are presented and critically discussed, with abundant references to the technical
literature. Section 5 focuses on the origin of cycle amplitude fluctuations, again presenting some
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Where does the solar butterfly come from ?

■ The solar magnetic field shows a remarkable spatiotemporal coherence 
   though it is generated by convective dynamo within its interior. 

■ Still unclear what dynamo mode is excited in the solar interior 
   and how it regulates magnetic cycle.

■ Seeking “PIECEs” to solve the solar dynamo puzzle
   by the help of global and local convective dynamo simulations.

Courtesy D. Hathaway 



Where does the solar butterfly come from ?

■ Solar butterfly mainly comes from
- differential rotation : !-process
- convection (+ mag. buoyancy) : !-process

©HAO 
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Figure 18: Time-latitude diagrams of the surface toroidal field at the core-envelope interface
(Panel A), and radial component of the surface magnetic field (Panel B) in a Babcock–Leighton
model of the solar cycle. This solution is computed for solar-like differential rotation and meridional
circulation, the latter here closing at the core-envelope interface. The core-to-envelope contrast
in magnetic diffusivity is ∆η = 1/300, the envelope diffusivity ηT = 2.5 × 1011 cm2 s−1, and the
(poleward) mid-latitude surface meridional flow speed is u0 = 16 m s−1.
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(Charbonneau 2005)

 Is the !-process essential piece   
 for cyclic magnetic dynamo ?



Is the !-process essential for cyclic dynamo ?
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FIG. 2.— Time series of the vertical profiles of (a) 〈Bx〉 and (b) 〈By〉. The orange (blue) tone denotes the positive (negative) component of the mean magnetic
field.

over the period of ∼ 200τcv. It is noteworthy that there is a
phase difference of about π/2 between 〈Bx〉 and 〈By〉. The
observed oscillatory behavior is reminiscent of the solar but-
terfly diagram although there is a difference in the propagation
direction between the simulated field and the sunspot field.

Since there is no physical mechanism for the symmetry
braking in the horizontal directions, the mean flow is absent
in our simulation, i.e., 〈u〉 = 0. In contrast, the mean kinetic
helicity naturally arises from the up-down asymmetry in the
convective motion as shown in Figure 3a. The solid line is
the vertical profile of the mean kinetic helicity defined by
Hk = 〈〈u · (∇×u)〉〉, where the double angular brackets de-
note the time and horizontal average. Note that the vertical
axis is normalized by the absolute maximum value of the ki-
netic helicity of |Hk,max| = 9.2×10−3. The time average spans
in the range of 500 ≤ t/τcv ≤ 600. The depth z = zc where the
sign of Hk changes is indicated by the filled circle.

The downflow acquires a negative vorticity as a conse-
quence of the Coriolis force acting on the converging motion,
yielding the negative helicity in the upper and mid convec-
tion zones. In contrast, near the base of the convection zone,
the downflow plume is decelerated and diverged by negative
buoyancy, acquiring a positive helicity (e.g., Miesch 2005).
The mean kinetic helicity with the vertical reflectional asym-
metry should play a prominent role in sustaining the large-
scale dynamo if the α2-type dynamo mechanism is operated
in our simulation.

4. MEAN-FIELD DYNAMO MODEL

Two questions naturally arise from our simulation results as
to what type of dynamo mode is excited and then what regu-
lates the oscillation cycle of the mean field. To explore the un-
derlying dynamo mechanism, we construct a one-dimensional
mean-field dynamo model.

By dividing the variables into horizontal mean and fluctuat-
ing components, as u = 〈u〉+u′ and B = 〈B〉+B′, and taking
the horizontal average of the induction equation, the mean-
field dynamo equation is obtained

∂〈Bh〉
∂t

= ∇× [α〈Bh〉− (η +ηt)∇×〈Bh〉] , (9)

where Bh = (Bx,By) is the horizontal magnetic component.
The coefficients α and ηt represent the α-effect and the tur-
bulent magnetic diffusivity. Here all the terms related to the
mean flow and the mean vertical field are dropped because

of 〈u〉 = 〈Bz〉 = 0 from the simulation results. All the vari-
ables, except the magnetic diffusivity η, have time and z de-
pendences.

The evolutions of the α and ηt are affected by the nonlinear
back-reaction of the mean-field on the dynamo coefficients.
To take it self-consistently into account, we use the dynamical
α-quenching and algebraic η-quenching:

∂α

∂t
= −2ηk

t k2
f

[
α〈Bh〉2 −ηtµ0〈J ·Bh〉

B2
eq

+ α−αk

ηk
t /η

]
, (10)

ηt = ηk
t

(
1 + f

|〈Bh〉|
Beq

)−1

, (11)

with J = ∇×Bh/µ0 (Blackman & Brandenburg 2002), where
k f is the characteristic wavenumber of the convective ed-
dies, and f is a coefficient which controls the saturation field
strength. In the following, we use f = 5

√
2/π based on the

asymptotic form of equation (20) of Rogachevskii & Kleeorin
(2001).

In the second order correlation approximation, the dynamo
coefficients αk and ηk

t are given by

αk(z) = −1
3
τc〈〈u′ ·∇×u′〉〉 = −1

3
τcHk , (12)

ηk
t (z) =

1
3
τc〈〈u′2〉〉 =

1
3
τcu2

rms , (13)

where τc is the correlation time. The replacement of u′ by u
is allowed here because 〈u〉 = 0 in our simulation. One can
find that the dynamo coefficients αk and ηk are proportional
to the mean kinetic helicity and the mean squared velocity
that can be directly computed from the simulation. In addi-
tion, the characteristic wavenumber k f , the equipartition field
strength Beq and the correlation time are also extracted from
the simulation data

k f (z) =
2π

Hp
, Beq(z) = 〈〈µ0ρu2〉〉 , τc(z) =

τ̃Hp

urms
, (14)

with the pressure scale height Hp = −dz/dln〈P〉. Here τ̃ is
only a given parameter in our mean-field model. We use
τ̃ = 0.6 in the following. In the cooling and stable layers, the
correlation time τc is smoothly connected to zero by an nar-
row (( 0.05d) error function because equations (13) and (14)
are not expected to hold there. The vertical profiles of u2

rms
and B2

eq are shown in Figure 3a by dashed and dash-dotted

■ Answer : !-process is NOT NECESSARILY. 

 DNS (Direct Numerical Simulation) 

Cyclic large-scale magnetic field can emerge 
spontaneously from convective turbulence 
WITHOUT "-process.



What is dynamo mode excited in our DNS ?
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FIG. 3.— (a) Vertical profiles of Hk (solid), u2
rms (dashed) and B2

eq (dash-dotted). The overbars represent that the profiles are normalized by their absolute
maximum values Hk,max = 9.2× 10−3, u2

rms,max = 5.5× 10−4 and B2
eq,max = 1.4× 10−3 . (b) Time series of the α (dashed) and ηt (solid) at z = zc. The horizontal

axis is normalized by the quenched turbulent diffusion time. The quenched turbulent diffusivity ηt,q at z = zc is indicated by the square symbol.

FIG. 4.— Time series of the vertical profiles of (a) 〈Bx〉 and (b) 〈By〉 for the mean-field model.

lines. They are normalized by their absolute maximum values
|u2

rms,max| = 5.5×10−4 and |B2
eq,max| = 1.4×10−3.

For given all the profiles in equations (12)–(14) from the
simulation data, the time-integration of the coupled equations
(9)–(11) is solved by the second-order central difference. We
use the same domain (−0.15d ≤ z ≤ 1.85d), magnetic diffu-
sivity (η = 7.4× 10−5), and the other settings as those of the
simulation setup.

Figure 3b shows the time evolutions of α (dashed) and ηt
(solid) at z = zc. The time is normalized by the quenched tur-
bulent diffusion time defined by τd = L2/ηt,q, where L is the
domain size and ηt,q = 7.4× 10−4 is the quenched turbulent
diffusivity at z = zc indicated by the squared symbol in Fig-
ure 3b. We adopt L = 2d for the mean-field model. The dy-
namo coefficients decrease with the time due to the nonlinear
back-reaction of the mean-field. After the transition stage of
t/τd ! 1, they are settled into the quenched values and the
system reaches a saturated state.

The time series of the vertical profiles of 〈Bx〉 and 〈By〉 are
shown in Figures 4a and 4b. The horizontal axis is normal-

ized by the quenched turbulent diffusion time. The oscillatory
mode grows and is maintained in the bulk of the convection
zone. Like as the simulation result, it is the strongest at around
z = zc and propagates from there to top and base of the convec-
tion zone. The phase difference of π/2 between 〈Bx〉 and 〈Bx〉
is also reproduced. Our model indicates that the quenched tur-
bulent diffusion regulates the magnetic cycle.

Quantitative agreements between the simulation and the
mean-field model can be found in Figure 5, in which the
time series of 〈Bx〉cz (red) and 〈By〉cz (blue) are shown.
Here the single angular bracket with subscript “cz" denotes
the volume-average over the convection zone. The solid
and dashed lines present the simulation data and mean-field
model. Note that the time of the simulation data is normal-
ized by τd with L = 4d (maximum size of the domain) and
ηt,q. In contrast, the time of the mean-field model is normal-
ized by τd with L = 2d. The reference time of the mean-field
model is shifted to match the phase of the simulation data.

The large-scale dynamo observed in the simulation is quan-
titatively reproduced by the mean-field model of α2 dynamo.
The oscillation period of the simulated large-scale field is also

■ Answer : That would be the “!2-dynamo mode”.
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FIG. 2.— Time series of the vertical profiles of (a) 〈Bx〉 and (b) 〈By〉. The orange (blue) tone denotes the positive (negative) component of the mean magnetic
field.

over the period of ∼ 200τcv. It is noteworthy that there is a
phase difference of about π/2 between 〈Bx〉 and 〈By〉. The
observed oscillatory behavior is reminiscent of the solar but-
terfly diagram although there is a difference in the propagation
direction between the simulated field and the sunspot field.

Since there is no physical mechanism for the symmetry
braking in the horizontal directions, the mean flow is absent
in our simulation, i.e., 〈u〉 = 0. In contrast, the mean kinetic
helicity naturally arises from the up-down asymmetry in the
convective motion as shown in Figure 3a. The solid line is
the vertical profile of the mean kinetic helicity defined by
Hk = 〈〈u · (∇×u)〉〉, where the double angular brackets de-
note the time and horizontal average. Note that the vertical
axis is normalized by the absolute maximum value of the ki-
netic helicity of |Hk,max| = 9.2×10−3. The time average spans
in the range of 500 ≤ t/τcv ≤ 600. The depth z = zc where the
sign of Hk changes is indicated by the filled circle.

The downflow acquires a negative vorticity as a conse-
quence of the Coriolis force acting on the converging motion,
yielding the negative helicity in the upper and mid convec-
tion zones. In contrast, near the base of the convection zone,
the downflow plume is decelerated and diverged by negative
buoyancy, acquiring a positive helicity (e.g., Miesch 2005).
The mean kinetic helicity with the vertical reflectional asym-
metry should play a prominent role in sustaining the large-
scale dynamo if the α2-type dynamo mechanism is operated
in our simulation.

4. MEAN-FIELD DYNAMO MODEL

Two questions naturally arise from our simulation results as
to what type of dynamo mode is excited and then what regu-
lates the oscillation cycle of the mean field. To explore the un-
derlying dynamo mechanism, we construct a one-dimensional
mean-field dynamo model.

By dividing the variables into horizontal mean and fluctuat-
ing components, as u = 〈u〉+u′ and B = 〈B〉+B′, and taking
the horizontal average of the induction equation, the mean-
field dynamo equation is obtained

∂〈Bh〉
∂t

= ∇× [α〈Bh〉− (η +ηt)∇×〈Bh〉] , (9)

where Bh = (Bx,By) is the horizontal magnetic component.
The coefficients α and ηt represent the α-effect and the tur-
bulent magnetic diffusivity. Here all the terms related to the
mean flow and the mean vertical field are dropped because

of 〈u〉 = 〈Bz〉 = 0 from the simulation results. All the vari-
ables, except the magnetic diffusivity η, have time and z de-
pendences.

The evolutions of the α and ηt are affected by the nonlinear
back-reaction of the mean-field on the dynamo coefficients.
To take it self-consistently into account, we use the dynamical
α-quenching and algebraic η-quenching:

∂α
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= −2ηk
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[
α〈Bh〉2 −ηtµ0〈J ·Bh〉

B2
eq

+ α−αk

ηk
t /η

]
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with J = ∇×Bh/µ0 (Blackman & Brandenburg 2002), where
k f is the characteristic wavenumber of the convective ed-
dies, and f is a coefficient which controls the saturation field
strength. In the following, we use f = 5

√
2/π based on the

asymptotic form of equation (20) of Rogachevskii & Kleeorin
(2001).

In the second order correlation approximation, the dynamo
coefficients αk and ηk

t are given by
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where τc is the correlation time. The replacement of u′ by u
is allowed here because 〈u〉 = 0 in our simulation. One can
find that the dynamo coefficients αk and ηk are proportional
to the mean kinetic helicity and the mean squared velocity
that can be directly computed from the simulation. In addi-
tion, the characteristic wavenumber k f , the equipartition field
strength Beq and the correlation time are also extracted from
the simulation data

k f (z) =
2π

Hp
, Beq(z) = 〈〈µ0ρu2〉〉 , τc(z) =

τ̃Hp

urms
, (14)

with the pressure scale height Hp = −dz/dln〈P〉. Here τ̃ is
only a given parameter in our mean-field model. We use
τ̃ = 0.6 in the following. In the cooling and stable layers, the
correlation time τc is smoothly connected to zero by an nar-
row (( 0.05d) error function because equations (13) and (14)
are not expected to hold there. The vertical profiles of u2

rms
and B2

eq are shown in Figure 3a by dashed and dash-dotted

 DNS-driven MF model 

 DNS (Direct Numerical Simulation) 

■ Answer : !-process is NOT NECESSARILY. 



Direct Numerical Simulation 
of Large-scale Dynamo
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■ Basic equations. : fully Compressible MHD equations

■ Model : top cooling layer, middle convection & bottom radiative zones
                ! is anti-parallel to g,  aspect ratio: Lx/Lcz = Ly/Lcz  = 4

■ Parameters : Pr = 1.2, Pm = 4, Ra = 4!106, Ro = vrms/2"0d ~ 0.03 @mid-CZ
 "bottom /"top ~ 10

■ Horizontal Boundary:
  - periodic for all the variables

■ Vertical Boundary:
  - stress-free for the velocity
  - Bx = By = "zBz = 0    @top
    "zBx = "zBy = Bz = 0 @bottom
  - "z T = const @bottom
        T = const @top

■ Numerical Scheme
  - Second-order Godunov-type 
    finite-difference scheme
   [256 (x) ! 256 (y) ! 128 (z)]
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The viscous stress Π is written by Π = 2ρνS with the strain
rate tensor

Si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi
− 2

3
δi j∇ ·u

)
. (5)

The heating term Qheat has a form

Qheat =
∇ · (κ∇ε)

ρ
+ 2νS2 + µ0ηJ2

ρ
, (6)

We assume a perfect gas law P = (γ − 1)ρε with γ = 5/3.
The initial hydrostatic balance is described by a piecewise

polytropic distribution with the polytropic index m,

dε

dz
=

g0

(γ − 1)(m + 1)
. (7)

We choose m = 1 for the cooling and convective layers, and
m = 3 for the stable layer. The thermal conductivity is deter-
mined by requiring a constant vertical heat flux throughout
the domain.

Normalization quantities are defined by setting d = g0 = ρ0 =
µ0 = 1, where ρ0 is the initial density at z = z0. The stratifica-
tion level is controlled by the normalized pressure scale height
at the surface defined by ξ0 = Hp/d = (γ − 1)ε0/(g0d), where
ε0 is the specific internal energy at z = z0. In this work, we use
ξ0 = 0.3, yielding a density contrast about 9.

We define the Prandtl, magnetic Prandtl, and Rayleigh
numbers by

Pr =
ν

χ̄
, Pm =

ν

η
, Ra =

g0d4

χ̄ν

[
∇−∇ad

Hp,m

]
, (8)

where χ̄≡ κ/γρm is the thermal diffusivity and ρm is the den-
sity at zm = (z2 − z1)/2. Here ∇ −∇ad is the superadiabatic
temperature gradient with ∇ad = 1−1/γ, ∇ = (∂ lnT/∂ lnP)zm ,
and Hp,m is the pressure scale height at z = zm .

The relative importance of rotation in the convection is
measured by the Coriolis number Co = 2Ω0d/um, where
um ≡

√
〈u2

z 〉v is the mean convective velocity. The angu-
lar bracket with subscript “v" denotes the time and volume
average in the convection zone at the saturated state. The
convective turn-over time and the volume-averaged equipar-
tition field strength are defined, respectively, by τcv ≡ d/um

and Be,v ≡
√

〈µ0ρu2
z 〉v.

The periodic boundary condition is assumed for all the vari-
ables in the horizontal directions. The stress-free boundary
condition for the velocity is imposed on the vertical bound-
aries. We assume the perfect conductor boundary condition
for the magnetic field on the bottom, and the vertical field
condition on the top boundary. A constant energy flux is im-
posed on the bottom boundary. The internal energy is fixed to
be ε0 on the top boundary.

The equations (1)–(4) are solved by the second-order
Godunov-type finite-difference scheme which employs an ap-
proximate MHD Riemann solver developed by Sano et al.
(1998). The magnetic field evolution is calculated with
CMoC-CT method (Clarke 1996). Non-dimensional param-
eters Pr = 1.4, Pm = 4.0, Ra = 3.9×106, and constant angular
velocity of Ω0 = 0.4 are adopted. We use a uniform grid of
256 (in x) ×256 (in y) × 128 (in z) zones. A small random
perturbation is added to the velocity and magnetic fields when
the calculation starts.

3. SIMULATION RESULTS

FIG. 1.— Snapshot of the vertical velocity when t = 400τcv. The red (blue)
tone denotes downflow (upflow). The magnetic field lines are visualized in
the half volume.

After the convective motion sets in, the system reaches an
equilibrated state at t & 200τcv. The mean convective velocity
is evaluated there as um = 0.019, providing Be,v = 0.034, Co =
42 and τcv = 52.6. We have run the simulation till & 1400τcv,
and studied the convection and resultant dynamo.

Shown in Figure 1 is the snapshot of the vertical velocity
when t = 400τcv. The red (blue) tone denotes downflow (up-
flow). A sufficient scale separation between the convective
eddies and the domain size is known as an important ingre-
dient for the large-scale dynamo (e.g., Brandenburg & Subra-
manian 2005). We have chosen the relatively rapid rotation
(Co & 42), yielding small convective cells relative to the box
size. In the equilibrated state, the convective motion is char-
acterized by the broader and slower upflow surrounded by
narrower and faster downflow lanes. The downflow persists
the plume-like coherent structure even just above the base
of the convection zone, and then penetrates into the under-
lying stable layer. The convective motion is dominated by the
downflow plumes because of the up-down asymmetry result-
ing from the density stratification (e.g., Spruit et al. 1990).

As a result of the rotating stratified convection, large-scale
dynamo is successfully operated in our simulation. The time
series of the vertical profiles of 〈Bx〉 and 〈By〉 are shown in
Figures 2a and 2b. Here the single angular bracket denotes the
horizontal average. The orange (blue) tone denotes the pos-
itive (negative) component of the mean magnetic field. The
horizontal dashed line indicates the interface between the con-
vection and stable zones. The vertical axis is shown by z3 − z.

After the early kinematic stage during t ! 200τcv, the mag-
netic field strength enters into the dynamic regime. In this
stage, the mean horizontal field is spontaneously organized in
the bulk of the convection zone. The maximum mean-field
strength reaches an order of Be,v. The ratio of the mean and
total field strengths is evaluated as 〈B〉2

v/〈B2〉v = 0.6 in the
convection zone. In contrast to the horizontal component, the
vertical field does not show any coherent signatures, and is
fully dominated by fluctuating component, i.e., 〈Bz〉 = 0.

The large-scale field shows a well-regulated oscillatory be-
havior. The mean field component is the strongest at around
z3 − z = 1.2 and seems to propagate from there to top and base
of the convection zone. The polarity is then gradually reversed

Properties of Rotating Stratified Convection

■ Broader and slower upflow surrounded 
   by narrower and faster downflow lanes
   (! up-down asymmetry).

■ No mean horizontal flow (and shear) 
   because of no symmetry breaker in
   x-y (horizontal) directions.side view

top view 3D view

mag. field line
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FIG. 2.— Time series of the vertical profiles of (a) 〈Bx〉 and (b) 〈By〉. The orange (blue) tone denotes the positive (negative) component of the mean magnetic
field.

over the period of ∼ 200τcv. It is noteworthy that there is a
phase difference of about π/2 between 〈Bx〉 and 〈By〉. The
observed oscillatory behavior is reminiscent of the solar but-
terfly diagram although there is a difference in the propagation
direction between the simulated field and the sunspot field.

Since there is no physical mechanism for the symmetry
braking in the horizontal directions, the mean flow is absent
in our simulation, i.e., 〈u〉 = 0. In contrast, the mean kinetic
helicity naturally arises from the up-down asymmetry in the
convective motion as shown in Figure 3a. The solid line is
the vertical profile of the mean kinetic helicity defined by
Hk = 〈〈u · (∇×u)〉〉, where the double angular brackets de-
note the time and horizontal average. Note that the vertical
axis is normalized by the absolute maximum value of the ki-
netic helicity of |Hk,max| = 9.2×10−3. The time average spans
in the range of 500 ≤ t/τcv ≤ 600. The depth z = zc where the
sign of Hk changes is indicated by the filled circle.

The downflow acquires a negative vorticity as a conse-
quence of the Coriolis force acting on the converging motion,
yielding the negative helicity in the upper and mid convec-
tion zones. In contrast, near the base of the convection zone,
the downflow plume is decelerated and diverged by negative
buoyancy, acquiring a positive helicity (e.g., Miesch 2005).
The mean kinetic helicity with the vertical reflectional asym-
metry should play a prominent role in sustaining the large-
scale dynamo if the α2-type dynamo mechanism is operated
in our simulation.

4. MEAN-FIELD DYNAMO MODEL

Two questions naturally arise from our simulation results as
to what type of dynamo mode is excited and then what regu-
lates the oscillation cycle of the mean field. To explore the un-
derlying dynamo mechanism, we construct a one-dimensional
mean-field dynamo model.

By dividing the variables into horizontal mean and fluctuat-
ing components, as u = 〈u〉+u′ and B = 〈B〉+B′, and taking
the horizontal average of the induction equation, the mean-
field dynamo equation is obtained

∂〈Bh〉
∂t

= ∇× [α〈Bh〉− (η +ηt)∇×〈Bh〉] , (9)

where Bh = (Bx,By) is the horizontal magnetic component.
The coefficients α and ηt represent the α-effect and the tur-
bulent magnetic diffusivity. Here all the terms related to the
mean flow and the mean vertical field are dropped because

of 〈u〉 = 〈Bz〉 = 0 from the simulation results. All the vari-
ables, except the magnetic diffusivity η, have time and z de-
pendences.

The evolutions of the α and ηt are affected by the nonlinear
back-reaction of the mean-field on the dynamo coefficients.
To take it self-consistently into account, we use the dynamical
α-quenching and algebraic η-quenching:

∂α

∂t
= −2ηk

t k2
f

[
α〈Bh〉2 −ηtµ0〈J ·Bh〉

B2
eq

+ α−αk

ηk
t /η

]
, (10)

ηt = ηk
t

(
1 + f

|〈Bh〉|
Beq

)−1

, (11)

with J = ∇×Bh/µ0 (Blackman & Brandenburg 2002), where
k f is the characteristic wavenumber of the convective ed-
dies, and f is a coefficient which controls the saturation field
strength. In the following, we use f = 5

√
2/π based on the

asymptotic form of equation (20) of Rogachevskii & Kleeorin
(2001).

In the second order correlation approximation, the dynamo
coefficients αk and ηk

t are given by

αk(z) = −1
3
τc〈〈u′ ·∇×u′〉〉 = −1

3
τcHk , (12)

ηk
t (z) =

1
3
τc〈〈u′2〉〉 =

1
3
τcu2

rms , (13)

where τc is the correlation time. The replacement of u′ by u
is allowed here because 〈u〉 = 0 in our simulation. One can
find that the dynamo coefficients αk and ηk are proportional
to the mean kinetic helicity and the mean squared velocity
that can be directly computed from the simulation. In addi-
tion, the characteristic wavenumber k f , the equipartition field
strength Beq and the correlation time are also extracted from
the simulation data

k f (z) =
2π

Hp
, Beq(z) = 〈〈µ0ρu2〉〉 , τc(z) =

τ̃Hp

urms
, (14)

with the pressure scale height Hp = −dz/dln〈P〉. Here τ̃ is
only a given parameter in our mean-field model. We use
τ̃ = 0.6 in the following. In the cooling and stable layers, the
correlation time τc is smoothly connected to zero by an nar-
row (( 0.05d) error function because equations (13) and (14)
are not expected to hold there. The vertical profiles of u2

rms
and B2

eq are shown in Figure 3a by dashed and dash-dotted

Oscillatory Large-scale Magnetic Field

■ Mean-horizontal field with a remarkable spatiotemporal coherency 
   is spontaneously organized in the bulk of the convection zone.

■ "Bx# and "By# reach maximally the equipartition field strength (Beq ~ 0.035).

■ The mean-field is the strongest at around the mid-CZ and propagates 
   from there to top and base of the convection zone.

■ A phase difference of about # /2 between "Bx# and "By#.

■ "Bz# does not show any coherent signature, is dominated by turbulent field.



■ Kapyla, Mantere & Brandenburg 2013

Kapyla, Mantere & Brandenburg (2013)

■ They conjectured that this is a manifestation of !2 dynamo mode.

   However, the “evidence” has not yet been exhibited.

 Similar DNS results have been already reported.

Try to show the evidence !



DNS-driven Mean-Field Dynamo Model
~ for getting the evidence of !2 dynamo mode ~

Oscillatory α2-Dynamo Mode in Rotating Stratified Convection 3

Fig. 2.— Time series of the vertical profiles of (a) 〈Bx〉 and (b) 〈By〉. The orange (blue) tone denotes the positive (negative) component
of the mean magnetic field.

organized in the bulk of the convection zone. The max-
imum mean-field strength reaches an order of Be,v. The
ratio of the mean and total field strengths is evaluated
as 〈B〉2v/〈B2〉v = 0.6 in the convection zone. In contrast
to the horizontal component, the vertical field does not
show any coherent signatures, and is fully dominated by
fluctuating component, i.e., 〈Bz〉 = 0.

The large-scale field shows a well-regulated oscillatory
behavior. The mean field component is the strongest at
around z3 − z = 1.2 and seems to propagate from there
to top and base of the convection zone. The polarity is
then gradually reversed over the period of ∼ 200τcv. It
is noteworthy that there is a phase difference of about
π/2 between 〈Bx〉 and 〈By〉. The observed oscillatory
behavior is reminiscent of the solar butterfly diagram
although there is a difference in the propagation direction
between the simulated field and the sunspot field.

Since there is no physical mechanism for the symmetry
braking in the horizontal directions, the mean flow is
absent in our simulation, i.e., 〈u〉 = 0. In contrast, the
mean kinetic helicity naturally arises from the up-down
asymmetry in the convective motion as shown in Figure
3a. The solid line is the vertical profile of the mean
kinetic helicity defined by Hk = 〈〈u·(∇×u)〉〉, where the
double angular brackets denote the time and horizontal
average. Note that the vertical axis is normalized by
the absolute maximum value of the kinetic helicity of
|Hk,max| = 9.2 × 10−3. The time average spans in the
range of 500 ≤ t/τcv ≤ 600. The depth z = zc where the
sign of Hk changes is indicated by the filled circle.

The downflow acquires a negative vorticity as a con-
sequence of the Coriolis force acting on the converging
motion, yielding the negative helicity in the upper and
mid convection zones. In contrast, near the base of the
convection zone, the downflow plume is decelerated and
diverged by negative buoyancy, acquiring a positive he-
licity (e.g., Miesch 2005). The mean kinetic helicity with
the vertical reflectional asymmetry should play a promi-
nent role in sustaining the large-scale dynamo if the α2-
type dynamo mechanism is operated in our simulation.

4. MEAN-FIELD DYNAMO MODEL

Two questions naturally arise from our simulation re-
sults as to what type of dynamo mode is excited and then

what regulates the oscillation cycle of the mean field. To
explore the underlying dynamo mechanism, we construct
a one-dimensional mean-field dynamo model.

By dividing the variables into horizontal mean and
fluctuating components, as u = 〈u〉 + u′ and B =
〈B〉 + B′, and taking the horizontal average of the in-
duction equation, the mean-field dynamo equation is ob-
tained

∂〈Bh〉
∂t

= ∇× [α〈Bh〉 − (η + ηt)∇× 〈Bh〉] , (9)

where Bh = (Bx, By) is the horizontal magnetic compo-
nent. The coefficients α and ηt represent the α-effect and
the turbulent magnetic diffusivity. Here all the terms re-
lated to the mean flow and the mean vertical field are
dropped because of 〈u〉 = 〈Bz〉 = 0 from the simulation
results. All the variables, except the magnetic diffusivity
η, have time and z dependences.

The evolutions of the α and ηt are affected by the non-
linear back-reaction of the mean-field on the dynamo co-
efficients. To take it self-consistently into account, we use
the dynamical α-quenching and algebraic η-quenching:

∂α

∂t
=−2ηk

t k2
f

[
α〈Bh〉2 − ηtµ0〈J · Bh〉

B2
eq

+
α − αk

ηk
t /η

]
,(10)

ηt = ηk
t

(
1 + f

|〈Bh〉|
Beq

)−1

, (11)

with J = ∇× Bh/µ0 (Blackman & Brandenburg 2002),
where kf is the characteristic wavenumber of the convec-
tive eddies, and f is a coefficient which controls the satu-
ration field strength. In the following, we use f = 5

√
2/π

based on the asymptotic form of equation (20) of Ro-
gachevskii & Kleeorin (2001).

In the second order correlation approximation, the dy-
namo coefficients αk and ηk

t are given by

αk(z)=−1
3
τc〈〈u′ ·∇× u′〉〉 = −1

3
τcHk , (12)

ηk
t (z)=

1
3
τc〈〈u′2〉〉 =

1
3
τcu

2
rms , (13)

where τc is the correlation time. The replacement of u′

by u is allowed here because 〈u〉 = 0 in our simulation.
One can find that the dynamo coefficients αk and ηk are
proportional to the mean kinetic helicity and the mean

MF dynamo equation (!-effect is dropped):
(Given ! and %t, we can solve equation)

!-effect turbulent 
diffusion
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FIG. 3.— (a) Vertical profiles of Hk (solid), u2
rms (dashed) and B2

eq (dash-dotted). The overbars represent that the profiles are normalized by their absolute
maximum values Hk,max = 9.2× 10−3, u2

rms,max = 5.5× 10−4 and B2
eq,max = 1.4× 10−3 . (b) Time series of the α (dashed) and ηt (solid) at z = zc. The horizontal

axis is normalized by the quenched turbulent diffusion time. The quenched turbulent diffusivity ηt,q at z = zc is indicated by the square symbol.

FIG. 4.— Time series of the vertical profiles of (a) 〈Bx〉 and (b) 〈By〉 for the mean-field model.

lines. They are normalized by their absolute maximum values
|u2

rms,max| = 5.5×10−4 and |B2
eq,max| = 1.4×10−3.

For given all the profiles in equations (12)–(14) from the
simulation data, the time-integration of the coupled equations
(9)–(11) is solved by the second-order central difference. We
use the same domain (−0.15d ≤ z ≤ 1.85d), magnetic diffu-
sivity (η = 7.4× 10−5), and the other settings as those of the
simulation setup.

Figure 3b shows the time evolutions of α (dashed) and ηt
(solid) at z = zc. The time is normalized by the quenched tur-
bulent diffusion time defined by τd = L2/ηt,q, where L is the
domain size and ηt,q = 7.4× 10−4 is the quenched turbulent
diffusivity at z = zc indicated by the squared symbol in Fig-
ure 3b. We adopt L = 2d for the mean-field model. The dy-
namo coefficients decrease with the time due to the nonlinear
back-reaction of the mean-field. After the transition stage of
t/τd ! 1, they are settled into the quenched values and the
system reaches a saturated state.

The time series of the vertical profiles of 〈Bx〉 and 〈By〉 are
shown in Figures 4a and 4b. The horizontal axis is normal-

ized by the quenched turbulent diffusion time. The oscillatory
mode grows and is maintained in the bulk of the convection
zone. Like as the simulation result, it is the strongest at around
z = zc and propagates from there to top and base of the convec-
tion zone. The phase difference of π/2 between 〈Bx〉 and 〈Bx〉
is also reproduced. Our model indicates that the quenched tur-
bulent diffusion regulates the magnetic cycle.

Quantitative agreements between the simulation and the
mean-field model can be found in Figure 5, in which the
time series of 〈Bx〉cz (red) and 〈By〉cz (blue) are shown.
Here the single angular bracket with subscript “cz" denotes
the volume-average over the convection zone. The solid
and dashed lines present the simulation data and mean-field
model. Note that the time of the simulation data is normal-
ized by τd with L = 4d (maximum size of the domain) and
ηt,q. In contrast, the time of the mean-field model is normal-
ized by τd with L = 2d. The reference time of the mean-field
model is shifted to match the phase of the simulation data.

The large-scale dynamo observed in the simulation is quan-
titatively reproduced by the mean-field model of α2 dynamo.
The oscillation period of the simulated large-scale field is also

$ Convection Zone !$   Stable Zone   ! ★1st step

★2nd step

★3rd step

Take time & horizontal averages 
and derive mean vertical profiles 
of  helicity and RMS velocity

 Determine the profiles of 
 dynamo coefficient ! and %t :

Oscillatory α2-Dynamo Mode in Rotating Stratified Convection 3

Fig. 2.— Time series of the vertical profiles of (a) 〈Bx〉 and (b) 〈By〉. The orange (blue) tone denotes the positive (negative) component
of the mean magnetic field.

organized in the bulk of the convection zone. The max-
imum mean-field strength reaches an order of Be,v. The
ratio of the mean and total field strengths is evaluated
as 〈B〉2v/〈B2〉v = 0.6 in the convection zone. In contrast
to the horizontal component, the vertical field does not
show any coherent signatures, and is fully dominated by
fluctuating component, i.e., 〈Bz〉 = 0.

The large-scale field shows a well-regulated oscillatory
behavior. The mean field component is the strongest at
around z3 − z = 1.2 and seems to propagate from there
to top and base of the convection zone. The polarity is
then gradually reversed over the period of ∼ 200τcv. It
is noteworthy that there is a phase difference of about
π/2 between 〈Bx〉 and 〈By〉. The observed oscillatory
behavior is reminiscent of the solar butterfly diagram
although there is a difference in the propagation direction
between the simulated field and the sunspot field.

Since there is no physical mechanism for the symmetry
braking in the horizontal directions, the mean flow is
absent in our simulation, i.e., 〈u〉 = 0. In contrast, the
mean kinetic helicity naturally arises from the up-down
asymmetry in the convective motion as shown in Figure
3a. The solid line is the vertical profile of the mean
kinetic helicity defined by Hk = 〈〈u·(∇×u)〉〉, where the
double angular brackets denote the time and horizontal
average. Note that the vertical axis is normalized by
the absolute maximum value of the kinetic helicity of
|Hk,max| = 9.2 × 10−3. The time average spans in the
range of 500 ≤ t/τcv ≤ 600. The depth z = zc where the
sign of Hk changes is indicated by the filled circle.

The downflow acquires a negative vorticity as a con-
sequence of the Coriolis force acting on the converging
motion, yielding the negative helicity in the upper and
mid convection zones. In contrast, near the base of the
convection zone, the downflow plume is decelerated and
diverged by negative buoyancy, acquiring a positive he-
licity (e.g., Miesch 2005). The mean kinetic helicity with
the vertical reflectional asymmetry should play a promi-
nent role in sustaining the large-scale dynamo if the α2-
type dynamo mechanism is operated in our simulation.

4. MEAN-FIELD DYNAMO MODEL

Two questions naturally arise from our simulation re-
sults as to what type of dynamo mode is excited and then

what regulates the oscillation cycle of the mean field. To
explore the underlying dynamo mechanism, we construct
a one-dimensional mean-field dynamo model.

By dividing the variables into horizontal mean and
fluctuating components, as u = 〈u〉 + u′ and B =
〈B〉 + B′, and taking the horizontal average of the in-
duction equation, the mean-field dynamo equation is ob-
tained

∂〈Bh〉
∂t

= ∇× [α〈Bh〉 − (η + ηt)∇× 〈Bh〉] , (9)

where Bh = (Bx, By) is the horizontal magnetic compo-
nent. The coefficients α and ηt represent the α-effect and
the turbulent magnetic diffusivity. Here all the terms re-
lated to the mean flow and the mean vertical field are
dropped because of 〈u〉 = 〈Bz〉 = 0 from the simulation
results. All the variables, except the magnetic diffusivity
η, have time and z dependences.

The evolutions of the α and ηt are affected by the non-
linear back-reaction of the mean-field on the dynamo co-
efficients. To take it self-consistently into account, we use
the dynamical α-quenching and algebraic η-quenching:

∂α

∂t
=−2ηk

t k2
f

[
α〈Bh〉2 − ηtµ0〈J · Bh〉

B2
eq

+
α − αk

ηk
t /η

]
,(10)

ηt = ηk
t

(
1 + f

|〈Bh〉|
Beq

)−1

, (11)

with J = ∇× Bh/µ0 (Blackman & Brandenburg 2002),
where kf is the characteristic wavenumber of the convec-
tive eddies, and f is a coefficient which controls the satu-
ration field strength. In the following, we use f = 5

√
2/π

based on the asymptotic form of equation (20) of Ro-
gachevskii & Kleeorin (2001).

In the second order correlation approximation, the dy-
namo coefficients αk and ηk

t are given by

αk(z)=−1
3
τc〈〈u′ ·∇× u′〉〉 = −1

3
τcHk , (12)

ηk
t (z)=

1
3
τc〈〈u′2〉〉 =

1
3
τcu

2
rms , (13)

where τc is the correlation time. The replacement of u′

by u is allowed here because 〈u〉 = 0 in our simulation.
One can find that the dynamo coefficients αk and ηk are
proportional to the mean kinetic helicity and the mean
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Fig. 2.— Time series of the vertical profiles of (a) 〈Bx〉 and (b) 〈By〉. The orange (blue) tone denotes the positive (negative) component
of the mean magnetic field.

organized in the bulk of the convection zone. The max-
imum mean-field strength reaches an order of Be,v. The
ratio of the mean and total field strengths is evaluated
as 〈B〉2v/〈B2〉v = 0.6 in the convection zone. In contrast
to the horizontal component, the vertical field does not
show any coherent signatures, and is fully dominated by
fluctuating component, i.e., 〈Bz〉 = 0.

The large-scale field shows a well-regulated oscillatory
behavior. The mean field component is the strongest at
around z3 − z = 1.2 and seems to propagate from there
to top and base of the convection zone. The polarity is
then gradually reversed over the period of ∼ 200τcv. It
is noteworthy that there is a phase difference of about
π/2 between 〈Bx〉 and 〈By〉. The observed oscillatory
behavior is reminiscent of the solar butterfly diagram
although there is a difference in the propagation direction
between the simulated field and the sunspot field.

Since there is no physical mechanism for the symmetry
braking in the horizontal directions, the mean flow is
absent in our simulation, i.e., 〈u〉 = 0. In contrast, the
mean kinetic helicity naturally arises from the up-down
asymmetry in the convective motion as shown in Figure
3a. The solid line is the vertical profile of the mean
kinetic helicity defined by Hk = 〈〈u·(∇×u)〉〉, where the
double angular brackets denote the time and horizontal
average. Note that the vertical axis is normalized by
the absolute maximum value of the kinetic helicity of
|Hk,max| = 9.2 × 10−3. The time average spans in the
range of 500 ≤ t/τcv ≤ 600. The depth z = zc where the
sign of Hk changes is indicated by the filled circle.

The downflow acquires a negative vorticity as a con-
sequence of the Coriolis force acting on the converging
motion, yielding the negative helicity in the upper and
mid convection zones. In contrast, near the base of the
convection zone, the downflow plume is decelerated and
diverged by negative buoyancy, acquiring a positive he-
licity (e.g., Miesch 2005). The mean kinetic helicity with
the vertical reflectional asymmetry should play a promi-
nent role in sustaining the large-scale dynamo if the α2-
type dynamo mechanism is operated in our simulation.

4. MEAN-FIELD DYNAMO MODEL

Two questions naturally arise from our simulation re-
sults as to what type of dynamo mode is excited and then

what regulates the oscillation cycle of the mean field. To
explore the underlying dynamo mechanism, we construct
a one-dimensional mean-field dynamo model.

By dividing the variables into horizontal mean and
fluctuating components, as u = 〈u〉 + u′ and B =
〈B〉 + B′, and taking the horizontal average of the in-
duction equation, the mean-field dynamo equation is ob-
tained

∂〈Bh〉
∂t

= ∇× [α〈Bh〉 − (η + ηt)∇× 〈Bh〉] , (9)

where Bh = (Bx, By) is the horizontal magnetic compo-
nent. The coefficients α and ηt represent the α-effect and
the turbulent magnetic diffusivity. Here all the terms re-
lated to the mean flow and the mean vertical field are
dropped because of 〈u〉 = 〈Bz〉 = 0 from the simulation
results. All the variables, except the magnetic diffusivity
η, have time and z dependences.

The evolutions of the α and ηt are affected by the non-
linear back-reaction of the mean-field on the dynamo co-
efficients. To take it self-consistently into account, we use
the dynamical α-quenching and algebraic η-quenching:

∂α

∂t
=−2ηk

t k2
f

[
α〈Bh〉2 − ηtµ0〈J · Bh〉

B2
eq

+
α − αk

ηk
t /η

]
,(10)

ηt = ηk
t

(
1 + f

|〈Bh〉|
Beq

)−1

, (11)

with J = ∇× Bh/µ0 (Blackman & Brandenburg 2002),
where kf is the characteristic wavenumber of the convec-
tive eddies, and f is a coefficient which controls the satu-
ration field strength. In the following, we use f = 5

√
2/π

based on the asymptotic form of equation (20) of Ro-
gachevskii & Kleeorin (2001).

In the second order correlation approximation, the dy-
namo coefficients αk and ηk

t are given by

αk(z)=−1
3
τc〈〈u′ ·∇× u′〉〉 = −1

3
τcHk , (12)

ηk
t (z)=

1
3
τc〈〈u′2〉〉 =

1
3
τcu

2
rms , (13)

where τc is the correlation time. The replacement of u′

by u is allowed here because 〈u〉 = 0 in our simulation.
One can find that the dynamo coefficients αk and ηk are
proportional to the mean kinetic helicity and the mean

Solve 1D MF dynamo equation (all the variables depend on t and z): 

with non-linear 
back-reaction from MF.

(c.f., Blackman & Brandenburg 02)

&c = 1/(urmskc)
kc = Hp (z) /2#

Bh : horizontal magnetic components

no arbitrary 
parameters !
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FIG. 3.— (a) Vertical profiles of Hk (solid), u2
rms (dashed) and B2

eq (dash-dotted). The overbars represent that the profiles are normalized by their absolute
maximum values Hk,max = 9.2× 10−3, u2

rms,max = 5.5× 10−4 and B2
eq,max = 1.4× 10−3 . (b) Time series of the α (dashed) and ηt (solid) at z = zc. The horizontal

axis is normalized by the quenched turbulent diffusion time. The quenched turbulent diffusivity ηt,q at z = zc is indicated by the square symbol.

FIG. 4.— Time series of the vertical profiles of (a) 〈Bx〉 and (b) 〈By〉 for the mean-field model.

lines. They are normalized by their absolute maximum values
|u2

rms,max| = 5.5×10−4 and |B2
eq,max| = 1.4×10−3.

For given all the profiles in equations (12)–(14) from the
simulation data, the time-integration of the coupled equations
(9)–(11) is solved by the second-order central difference. We
use the same domain (−0.15d ≤ z ≤ 1.85d), magnetic diffu-
sivity (η = 7.4× 10−5), and the other settings as those of the
simulation setup.

Figure 3b shows the time evolutions of α (dashed) and ηt
(solid) at z = zc. The time is normalized by the quenched tur-
bulent diffusion time defined by τd = L2/ηt,q, where L is the
domain size and ηt,q = 7.4× 10−4 is the quenched turbulent
diffusivity at z = zc indicated by the squared symbol in Fig-
ure 3b. We adopt L = 2d for the mean-field model. The dy-
namo coefficients decrease with the time due to the nonlinear
back-reaction of the mean-field. After the transition stage of
t/τd ! 1, they are settled into the quenched values and the
system reaches a saturated state.

The time series of the vertical profiles of 〈Bx〉 and 〈By〉 are
shown in Figures 4a and 4b. The horizontal axis is normal-

ized by the quenched turbulent diffusion time. The oscillatory
mode grows and is maintained in the bulk of the convection
zone. Like as the simulation result, it is the strongest at around
z = zc and propagates from there to top and base of the convec-
tion zone. The phase difference of π/2 between 〈Bx〉 and 〈Bx〉
is also reproduced. Our model indicates that the quenched tur-
bulent diffusion regulates the magnetic cycle.

Quantitative agreements between the simulation and the
mean-field model can be found in Figure 5, in which the
time series of 〈Bx〉cz (red) and 〈By〉cz (blue) are shown.
Here the single angular bracket with subscript “cz" denotes
the volume-average over the convection zone. The solid
and dashed lines present the simulation data and mean-field
model. Note that the time of the simulation data is normal-
ized by τd with L = 4d (maximum size of the domain) and
ηt,q. In contrast, the time of the mean-field model is normal-
ized by τd with L = 2d. The reference time of the mean-field
model is shifted to match the phase of the simulation data.

The large-scale dynamo observed in the simulation is quan-
titatively reproduced by the mean-field model of α2 dynamo.
The oscillation period of the simulated large-scale field is also

Nonlinear Solution: Propagating !2-Dynamo Wave

■ A spatiotemporal evolution of the mean-field in the DNS
   is reproduced by the MF (!2-dynamo) model. 

■ Like as the DNS, the mean-field is the strongest at around 
   mid-CZ and propagates from there to top and base of the 
   convection zone.

■ A phase difference of about # /2 between "Bx# and "By#.



Quantitative Agreements between DNS and MFM

■ The times of DNS and MF model are normalized by the same 
   microscopic (Spitzer’s) diffusion time throughout the radiative zone.

■ All the large-scale features, cycle period, amplitude, and phase
   difference in the DNS are identical to those in the MF model. 

 Not only qualitatively, there are quantitative agreements. 

Evidences of !2 dynamo mode 

Orange: Bx in DNS,                       Cyan: By in DNS
Red      : Bx in DNS-driven MF,   Blue  : By in DNS-driven MF

-0.03
-0.02
-0.01

0
0.01
0.02
0.03

0 1 2 3 4 5 6 7 8

〈B
x
〉 c

z
,
〈B

y
〉 c

z

τ/τd (≡ d2
RZ/η0)



Discussion



Oscillatory α2-Dynamo Mode in Rotating Stratified Convection 3

FIG. 2.— Time series of the vertical profiles of (a) 〈Bx〉 and (b) 〈By〉. The orange (blue) tone denotes the positive (negative) component of the mean magnetic
field.

over the period of ∼ 200τcv. It is noteworthy that there is a
phase difference of about π/2 between 〈Bx〉 and 〈By〉. The
observed oscillatory behavior is reminiscent of the solar but-
terfly diagram although there is a difference in the propagation
direction between the simulated field and the sunspot field.

Since there is no physical mechanism for the symmetry
braking in the horizontal directions, the mean flow is absent
in our simulation, i.e., 〈u〉 = 0. In contrast, the mean kinetic
helicity naturally arises from the up-down asymmetry in the
convective motion as shown in Figure 3a. The solid line is
the vertical profile of the mean kinetic helicity defined by
Hk = 〈〈u · (∇×u)〉〉, where the double angular brackets de-
note the time and horizontal average. Note that the vertical
axis is normalized by the absolute maximum value of the ki-
netic helicity of |Hk,max| = 9.2×10−3. The time average spans
in the range of 500 ≤ t/τcv ≤ 600. The depth z = zc where the
sign of Hk changes is indicated by the filled circle.

The downflow acquires a negative vorticity as a conse-
quence of the Coriolis force acting on the converging motion,
yielding the negative helicity in the upper and mid convec-
tion zones. In contrast, near the base of the convection zone,
the downflow plume is decelerated and diverged by negative
buoyancy, acquiring a positive helicity (e.g., Miesch 2005).
The mean kinetic helicity with the vertical reflectional asym-
metry should play a prominent role in sustaining the large-
scale dynamo if the α2-type dynamo mechanism is operated
in our simulation.

4. MEAN-FIELD DYNAMO MODEL

Two questions naturally arise from our simulation results as
to what type of dynamo mode is excited and then what regu-
lates the oscillation cycle of the mean field. To explore the un-
derlying dynamo mechanism, we construct a one-dimensional
mean-field dynamo model.

By dividing the variables into horizontal mean and fluctuat-
ing components, as u = 〈u〉+u′ and B = 〈B〉+B′, and taking
the horizontal average of the induction equation, the mean-
field dynamo equation is obtained

∂〈Bh〉
∂t

= ∇× [α〈Bh〉− (η +ηt)∇×〈Bh〉] , (9)

where Bh = (Bx,By) is the horizontal magnetic component.
The coefficients α and ηt represent the α-effect and the tur-
bulent magnetic diffusivity. Here all the terms related to the
mean flow and the mean vertical field are dropped because

of 〈u〉 = 〈Bz〉 = 0 from the simulation results. All the vari-
ables, except the magnetic diffusivity η, have time and z de-
pendences.

The evolutions of the α and ηt are affected by the nonlinear
back-reaction of the mean-field on the dynamo coefficients.
To take it self-consistently into account, we use the dynamical
α-quenching and algebraic η-quenching:

∂α

∂t
= −2ηk

t k2
f

[
α〈Bh〉2 −ηtµ0〈J ·Bh〉

B2
eq

+ α−αk

ηk
t /η

]
, (10)

ηt = ηk
t

(
1 + f

|〈Bh〉|
Beq

)−1

, (11)

with J = ∇×Bh/µ0 (Blackman & Brandenburg 2002), where
k f is the characteristic wavenumber of the convective ed-
dies, and f is a coefficient which controls the saturation field
strength. In the following, we use f = 5

√
2/π based on the

asymptotic form of equation (20) of Rogachevskii & Kleeorin
(2001).

In the second order correlation approximation, the dynamo
coefficients αk and ηk

t are given by

αk(z) = −1
3
τc〈〈u′ ·∇×u′〉〉 = −1

3
τcHk , (12)

ηk
t (z) =

1
3
τc〈〈u′2〉〉 =

1
3
τcu2

rms , (13)

where τc is the correlation time. The replacement of u′ by u
is allowed here because 〈u〉 = 0 in our simulation. One can
find that the dynamo coefficients αk and ηk are proportional
to the mean kinetic helicity and the mean squared velocity
that can be directly computed from the simulation. In addi-
tion, the characteristic wavenumber k f , the equipartition field
strength Beq and the correlation time are also extracted from
the simulation data

k f (z) =
2π

Hp
, Beq(z) = 〈〈µ0ρu2〉〉 , τc(z) =

τ̃Hp

urms
, (14)

with the pressure scale height Hp = −dz/dln〈P〉. Here τ̃ is
only a given parameter in our mean-field model. We use
τ̃ = 0.6 in the following. In the cooling and stable layers, the
correlation time τc is smoothly connected to zero by an nar-
row (( 0.05d) error function because equations (13) and (14)
are not expected to hold there. The vertical profiles of u2

rms
and B2

eq are shown in Figure 3a by dashed and dash-dotted

Discussion :  Self-excited nature of !2-mode

■ The minimum phase and the spontaneous revival from it would be a 
   manifestation of the self-excited nature of the !2-dynamo mode.
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Summary ~ Possibility of !2 dynamo mode ~

■ DNS of turbulent convective dynamo
      ! Oscillatory large-scale magnetic field 

■ DNS-driven MF !2-dynamo model
      ! large-scale features are quantitatively reproduced. 

■ Message
   : For the cyclic dynamo, !-process is not necessary ingredient. 
     Please keep in mind the possibility of the !2 mode in the Sun.
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FIG. 2.— Time series of the vertical profiles of (a) 〈Bx〉 and (b) 〈By〉. The orange (blue) tone denotes the positive (negative) component of the mean magnetic
field.

over the period of ∼ 200τcv. It is noteworthy that there is a
phase difference of about π/2 between 〈Bx〉 and 〈By〉. The
observed oscillatory behavior is reminiscent of the solar but-
terfly diagram although there is a difference in the propagation
direction between the simulated field and the sunspot field.

Since there is no physical mechanism for the symmetry
braking in the horizontal directions, the mean flow is absent
in our simulation, i.e., 〈u〉 = 0. In contrast, the mean kinetic
helicity naturally arises from the up-down asymmetry in the
convective motion as shown in Figure 3a. The solid line is
the vertical profile of the mean kinetic helicity defined by
Hk = 〈〈u · (∇×u)〉〉, where the double angular brackets de-
note the time and horizontal average. Note that the vertical
axis is normalized by the absolute maximum value of the ki-
netic helicity of |Hk,max| = 9.2×10−3. The time average spans
in the range of 500 ≤ t/τcv ≤ 600. The depth z = zc where the
sign of Hk changes is indicated by the filled circle.

The downflow acquires a negative vorticity as a conse-
quence of the Coriolis force acting on the converging motion,
yielding the negative helicity in the upper and mid convec-
tion zones. In contrast, near the base of the convection zone,
the downflow plume is decelerated and diverged by negative
buoyancy, acquiring a positive helicity (e.g., Miesch 2005).
The mean kinetic helicity with the vertical reflectional asym-
metry should play a prominent role in sustaining the large-
scale dynamo if the α2-type dynamo mechanism is operated
in our simulation.

4. MEAN-FIELD DYNAMO MODEL

Two questions naturally arise from our simulation results as
to what type of dynamo mode is excited and then what regu-
lates the oscillation cycle of the mean field. To explore the un-
derlying dynamo mechanism, we construct a one-dimensional
mean-field dynamo model.

By dividing the variables into horizontal mean and fluctuat-
ing components, as u = 〈u〉+u′ and B = 〈B〉+B′, and taking
the horizontal average of the induction equation, the mean-
field dynamo equation is obtained

∂〈Bh〉
∂t

= ∇× [α〈Bh〉− (η +ηt)∇×〈Bh〉] , (9)

where Bh = (Bx,By) is the horizontal magnetic component.
The coefficients α and ηt represent the α-effect and the tur-
bulent magnetic diffusivity. Here all the terms related to the
mean flow and the mean vertical field are dropped because

of 〈u〉 = 〈Bz〉 = 0 from the simulation results. All the vari-
ables, except the magnetic diffusivity η, have time and z de-
pendences.

The evolutions of the α and ηt are affected by the nonlinear
back-reaction of the mean-field on the dynamo coefficients.
To take it self-consistently into account, we use the dynamical
α-quenching and algebraic η-quenching:

∂α
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with J = ∇×Bh/µ0 (Blackman & Brandenburg 2002), where
k f is the characteristic wavenumber of the convective ed-
dies, and f is a coefficient which controls the saturation field
strength. In the following, we use f = 5
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2/π based on the

asymptotic form of equation (20) of Rogachevskii & Kleeorin
(2001).

In the second order correlation approximation, the dynamo
coefficients αk and ηk

t are given by

αk(z) = −1
3
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τcHk , (12)
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τc〈〈u′2〉〉 =
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where τc is the correlation time. The replacement of u′ by u
is allowed here because 〈u〉 = 0 in our simulation. One can
find that the dynamo coefficients αk and ηk are proportional
to the mean kinetic helicity and the mean squared velocity
that can be directly computed from the simulation. In addi-
tion, the characteristic wavenumber k f , the equipartition field
strength Beq and the correlation time are also extracted from
the simulation data

k f (z) =
2π

Hp
, Beq(z) = 〈〈µ0ρu2〉〉 , τc(z) =

τ̃Hp

urms
, (14)

with the pressure scale height Hp = −dz/dln〈P〉. Here τ̃ is
only a given parameter in our mean-field model. We use
τ̃ = 0.6 in the following. In the cooling and stable layers, the
correlation time τc is smoothly connected to zero by an nar-
row (( 0.05d) error function because equations (13) and (14)
are not expected to hold there. The vertical profiles of u2

rms
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Figure 8. (a) Profiles of 〈〈B̄2
i 〉θ 〉/〈〈B2〉s〉 for i = r, θ,φ. (b) Profiles of 〈(B̄r )2

l 〉/2〈〈B̄2
r 〉θ 〉 for l = 1, 2, and 3. The broken solid lines with red squares, blue circles, and

green diamonds denote the radial, latitudinal, and azimuthal components in panel (a), dipole (l = 1), quadrupole (l = 2), and octupole (l = 3) moments in panel (b)
for Model A. The broken dashed lines with the same symbols denote those for Model B. The time average spans in the range of 100τc ! t ! 400τc .
(A color version of this figure is available in the online journal.)

(a) (b) (c)

(d) (e) (f)

Figure 9. Snapshot of the azimuthal component of the magnetic field Bφ when t = 330τc on a spherical surface at sampled radii (a) r = 0.62R and (b) r = 0.85R for
Model A, and (c) r = 0.85R for Model B. The orange and blue tones depict positive and negative values of the Bφ component. The magnetic field lines at the time
and position corresponding to those in panels (a)–(c) are visualized in panels (d)–(f), respectively.
(A color version of this figure is available in the online journal.)

in the bottom convection zone and the stable zone although
the upper and mid-convection zones are dominated by higher
multipoles like in Model B. The stably stratified layer below the
convective envelope promotes the dipole solution as indicated
by Miesch et al. (2009).

The similarity and differences of the magnetic structure
between two models are the most obvious on the azimuthal
component of the magnetic field. A snapshot of the azimuthal
component of the magnetic field at t = 330τc is presented
in Figure 9 on a spherical surface at (a) r = 0.65R and (b)
r = 0.85R for Model A, and (c) r = 0.85R for Model B. The
orange and blue tones depict positive and negative values of the
Bφ component normalized by Beq. The magnetic field lines at the
time corresponding to those in the panels (a)–(c) are visualized
in Figures 9(d)–(f), respectively. As expected from Figures 7
and 8, the convective envelope is dominated by disordered

tangled magnetic field lines with a myriad of localized small-
scale structures in both models. These incoherent magnetic
fields are strongly influenced by vigorous convective motions
and thus are highly intermittent. The horizontal converging flows
sweep magnetic fields into downflow lanes and intensify them
locally to the super-equipartition strength as was observed in
existing convective dynamo simulations (e.g., Brandenburg et al.
1996; Cattaneo et al. 2003; Brun et al. 2004).

In the underlying stable layer of Model A, a strong large-
scale azimuthal component of magnetic field is built up around
the equator, and resides there for long time intervals. This
well-organized magnetic component is roughly antisymmetric
around the equatorial plane and has a maximum strength of an
order of Beq. The large-scale component is organized in the sta-
ble zone where the radial angular velocity gradient resides (see
Figure 6(a)). This would be important evidence of a connection
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ABSTRACT

Spherical solar dynamo simulations are performed. A self-consistent, fully compressible magnetohydrodynamic
system with a stably stratified layer below the convective envelope is numerically solved with a newly developed
simulation code based on the Yin–Yang grid. The effects of penetrative convection are studied by comparing two
models with and without the stable layer. The differential rotation profile in both models is reasonably solar-like with
equatorial acceleration. When considering the penetrative convection, a tachocline-like shear layer is developed and
maintained beneath the convection zone without assuming any forcing. While the turbulent magnetic field becomes
predominant in the region where the convective motion is vigorous, mean-field components are preferentially
organized in the region where the convective motion is less vigorous. Particularly in the stable layer, the strong,
large-scale field with a dipole symmetry is spontaneously built up. The polarity reversal of the mean-field component
takes place globally and synchronously throughout the system regardless of the presence of the stable layer. Our
results suggest that the stably stratified layer is a key component for organizing the large-scale strong magnetic
field, but is not essential for the polarity reversal.

Key words: convection – dynamo – magnetohydrodynamics (MHD) – Sun: interior
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1. INTRODUCTION

A grand challenge in solar physics is a construction of self-
consistent theory that explains the observed large-scale spatial
structures of the fields and their dynamical change in time.
Two basic large-scale structures that remain to be explained
are the azimuthal average of the azimuthal flow, v̄φ , and the
azimuthal average of the azimuthal magnetic field, B̄φ . The
averaged velocity, v̄φ , is characterized by the conical isorotation
profile in the meridian plane and the thin tachocline layer
with steep angular velocity gradient (e.g., Thompson et al.
2003). The averaged magnetic field, B̄φ , is characterized by
an antisymmetric profile with respect to the equator and the
polarity reversals with the pseudo-periodicity of 22 yr (e.g.,
Hathaway 2010). See Ossendrijver (2003) and Miesch (2005,
2012) for reviews.

To reproduce the large-scale structures and dynamics, magne-
tohydrodynamic (MHD) simulations have been performed both
in the global (spherical shell) geometry (e.g., Gilman & Miller
1981; Gilman 1983; Glatzmaier 1985) and in the local Carte-
sian geometry (e.g., Meneguzzi & Pouquet 1989; Cattaneo et al.
1991; Nordlund et al. 1992; Brandenburg et al. 1996).

The first modern solar dynamo simulation with solar val-
ues of luminosity, background stratification, and rotation rate
was performed by Brun et al. (2004). They solved anelas-
tic MHD convection system in the domain that extends over
0.72–0.97 R", spanning the bulk of the convection zone. While
the solar-like equatorial acceleration and the dynamo-generated
magnetic field with strengths of order 5000 G was achieved, the
mean large-scale magnetic field was relatively weak and did not
exhibit periodic polarity reversals.

Browning et al. (2006) showed, in an anelastic spherical shell
dynamo simulation with the presence of the tachocline, that
strong axisymmetric toroidal magnetic fields can be formed in
the stably stratified layer below the convection zone. The asso-
ciated mean poloidal magnetic fields showed the dipole domi-

nance, but they did not exhibit polarity reversals. While the solar-
like rotation profile was achieved in their simulations, a mechan-
ical forcing was necessary to maintain the thin tachocline layer
with steep angular velocity gradient.

Solar dynamo simulations that successfully produced the
cyclic large-scale magnetic fields were presented in Ghizaru
et al. (2010) and Racine et al. (2011). Their simulations are
based on an anelastic model that is commonly used in the global
circulation models of the Earth’s atmosphere with a cooling
term to force the system toward the ambient state (e.g., Prusa
et al. 2008; Smolarkiewicz & Szmelter 2009). The solar-like thin
tachocline layer was developed as a consequence of the cooling
as well as the low dissipation embodied in their numerical
scheme. They showed that the large-scale magnetic field is built
up in the tachocline layer and exhibits polarity reversals when
the temporal integration of the simulation was calculated long
enough.

The large-scale dynamo activity was found not only in the
anelastic models but also in the compressible dynamo simu-
lation. Käpylä et al. (2010) performed the dynamo simulation
with the penetrative convection in a spherical-wedge geometry
(e.g., Brandenburg et al. 2007). Using a weakly stratified dy-
namo model, they succeeded in simulating the formation and
the cyclic polarity reversal of the large-scale magnetic field.
Unlike Browning et al. (2006) and Ghizaru et al. (2010), the
large-scale dynamo operated in the convection zone in their
model. Despite the presence of the underlying stable layer be-
low the convective envelope, the spontaneous formation of the
solar-like tachocline layer was not observed.

These numerical studies that targeted the solar dynamo have
made it increasingly clear that the underlying stable layer below
the convection zone is an important building block for the solar
dynamo. It seems to play a crucial role in the formation of the
solar-like v̄φ and B̄φ . However, there is no research that directly
compares two dynamo simulations differing only in the presence
and absence of the underlying stable layer.

1

The Astrophysical Journal, 778:11 (14pp), 2013 November 20 Masada, Yamada, & Kageyama

Figure 3. Temporal evolutions of volume-averaged kinetic and magnetic
energies (εkin and εmag) for Models A and B. The red and orange curves
denote εkin and εmag for Model A, and the blue and green curves are those for
Model B.
(A color version of this figure is available in the online journal.)

physical properties of convections, mean flows, and magnetic
dynamos between the two models.

To examine the convective and magnetic structures in detail,
we define the following four averages of a function h(θ,φ) on
a sphere.

The latitudinal average:

〈h〉θ ≡ 1
2

∫ 1

−1
h(θ,φ) d cos θ, (11)

The longitudinal average:

〈h〉φ ≡ 1
2π

∫ π

−π

h(θ,φ) dφ, (12)

The spherical average:

〈h〉s ≡ 1
4π

∫ 1

−1

∫ π

−π

h(θ,φ) d cos θ dφ, (13)

The northern hemispheric average:

〈h〉+ ≡ 1
2π

∫ 1

0

∫ π

−π

h(θ,φ) d cos θ dφ. (14)

The time-average of each spatial mean is denoted by additional
angular brackets, such as 〈〈h〉θ 〉.

3.1. Properties of Convective Motion

Figure 4 shows, in the Mollweide projection, the distribution
of the radial velocity when t = 330τc on spherical surfaces at
different depths for two models. Panels (a)–(c) correspond to the
depths r = 0.95R, 0.85R, and 0.72R for Model A, and panels
(d)–(f) are those for Model B. The orange and blue tones depict
upflow and downflow velocities. At the upper (r = 0.95R) and
mid- (r = 0.85R) convection zones, the convective motion is
characterized by upflow dominant cells surrounded by networks
of narrow downflow lanes for both models. The higher the
latitude, the smaller the convective cell prevails. Elongated
columnar convective cells aligned with the rotation axis appear
near the equator. These are the typical features observed in
rotating stratified convection (e.g., Spruit et al. 1990; Miesch
et al. 2000; Brummell et al. 2002; Brun et al. 2004). In panel
(c), we find that the downflow lanes persist in the plume-like
coherent structure even just above the bottom of the unstable
layer (r = 0.72R). The downflow plumes then penetrate into
the underlying stable layer.

The radial profile of the mean radial velocity 〈〈v2
r 〉s〉1/2 is

shown in Figure 5. The red solid and blue dashed curves
correspond to Models A and B, respectively. The time average
spans in the range of 300τc ! t ! 400τc. The mean radial
velocity has a peak at the mid-convection zone (r ∼ 0.8R) for
both models. The convective motion is the most active there.
While the radial flow is restrained by the boundary placed on
the bottom of the convection zone in Model B, it can penetrate
into the underlying stable layer in Model A. As a result of the
penetrative convection, mean zonal and meridional flows are
driven by the Reynolds and Maxwell stresses in the stable layer.
This will be described in the following sections.

3.2. Structures of Mean Flow

In Figures 6(a) and (b), time-averaged mean angular velocity,
defined by 〈〈Ω〉φ〉 = 〈〈vφ〉φ〉/(r sin θ )+Ω0, is shown for models
A and B, respectively. The time average spans in the range of

(a) (b) (c)

(d) (e) (f)

Figure 4. Distribution of radial velocity on spherical surfaces at sampled radii vr (θ,φ) when t = 330τc (in the Mollweide projection). Panels (a)–(c) correspond to
the radii r = 0.95R, 0.85R, and 0.72R for Model A, and panels (d)–(f) are those for Model B. The orange and blue tones depict upflow and downflow velocities
normalized by vrms = 0.03.
(A color version of this figure is available in the online journal.)
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Figure 5. Radial profile of the mean radial velocity 〈〈v2
r 〉s〉1/2. The time average

spans in the range of 300τc ! t ! 400τc . The vertical axis is normalized by
vrms = 0.03. The red solid and blue dashed curves correspond to Models A
and B, respectively. The vertical dashed line denotes the base of the convection
zone.
(A color version of this figure is available in the online journal.)

300τc ! t ! 400τc. The normalization unit is the initial angular
velocity, Ω0.

The differential rotations in both models basically have
solar-like profiles with the equatorial acceleration. However,
both exhibit more cylindrical alignment than the solar rotation
profile characterized by the conical isorotation surface. The
system is dominated by the Taylor–Proudman balance in both
models (e.g., Pedlosky 1987). The angular velocity contrast, ∆Ω,

between equator and pole is about 18% in Model A and 16% in
Model B. These are slightly smaller than that obtained by the
helioseismology (∼20%). More remarkably, a radial gradient
of the angular velocity is developed in the stably stratified
layer around latitudes ±40◦. This structure is reminiscent of
the solar tachocline despite the fact that the radial shear layer
is broad compared to the observed one (Spiegel & Zahn 1992;
Charbonneau et al. 1999; Miesch 2005; Hughes et al. 2007). The
rotation profile of Model A is reasonably similar with that of the
Sun deduced from helioseismology (Thompson et al. 2003).

The spontaneous formation of the tachocline-like shear layer
below the convective envelope was reported in the hydrody-
namic simulation of the solar penetrative convection performed
by Brun et al. (2011). Our results suggest that the tachocline-like
shear layer is a natural outcome of the presence of the stable
layer even in the MHD convection system. We discuss more
about the differential rotation profile established in Model A in
Section 4.1.

Figures 6(c) and (d) show the time-averaged mean meridional
flows for the models A and B. The color contour depicts the
meridional flow velocity, defined by 〈〈vm〉φ〉 = [〈〈vr〉φ〉2 +
〈〈vθ 〉φ〉2]1/2, with a maximum ∼0.1vrms. The streaklines are
overplotted with a length proportional to the flow speed. The
circulation flow is primarily counter-clockwise in the bulk of
the convection zone in the northern hemisphere, that is, the
poleward in the upper convection zone and the equatorward in
the bottom convection zone in both models. However, there is
a clear difference in the circulation pattern between the two
models. While a large single-cell is formed in Model B, Model
A shows a double-cell pattern with a strong inward/outward
flow at the low/mid-latitudes. An intriguing finding is that the
equatorward component penetrates into the underlying stable
layer when the radial gradient of the angular velocity resides

(a) (b) (c)

(d)

Figure 6. Mean angular velocity 〈〈Ω〉φ〉 (panels (a) and (b) for Models A and B), and mean meridional flow (panels (c) and (d) for Models A and B), where
〈〈Ω〉φ〉 = 〈〈vφ〉φ〉/(r sin θ ) + Ω0. The mean meridional flow velocity is defined by 〈〈vm〉φ〉 = [〈〈vr 〉φ〉2 + 〈〈vθ 〉φ〉2]1/2. The white solid curves in panels (a) and (c)
denote the interface between the convective and stable layers.
(A color version of this figure is available in the online journal.)

5

The Astrophysical Journal, 778:11 (14pp), 2013 November 20 Masada, Yamada, & Kageyama

(a)

(b)

(c)

Figure 11. Azimuthally averaged magnetic field as a function of time and latitude for Model A. The top, middle, and bottom panels correspond to B̄r , B̄θ , and B̄φ at
the depth r = 0.65R. The red and blue tones depict positive and negative values of each magnetic component.
(A color version of this figure is available in the online journal.)

(a)

(b)

(c)

Figure 12. Azimuthally averaged magnetic field as a function of time and latitude for Model B. The top, middle, and bottom panels correspond to B̄r , B̄θ , and B̄φ at
the depth r = 0.72R. The red and blue tones depict positive and negative values of each magnetic component.
(A color version of this figure is available in the online journal.)
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