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Introduction

~ Where does the solar butterfly comes from ? ~




Where does the solar butterfly come from ?

= The solar magnetic field shows a remarkable spatiotemporal coherence
though it is generated by convective dynamo within its interior.
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= Still unclear what dynamo mode is excited in the solar interior
and how it regulates magnetic cycle.

s Seeking “PIECESs” to solve the solar dynamo puzzle
by the help of global and local convective dynamo simulations.



Where does the solar butterfly come from ?

= Solar butterfly mainly comes from
- differential rotation : 2-process
- convection (+ mag. buoyancy) : ¢-process

Babcock—-Leighton Model Ca=4.7 CQ=50000 Rm=466
(A) Toroidal flelld r/R=0.7

i

(Charbonneau 2005)
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Is the Q-process essential piece
for cyclic magnetic dynamo ?

0.00 Yrs,



Is the Q-process essential for cyclic dynamo ¢

= Answer : Q-process is NOT NECESSARILY.
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Cyclic large-scale magnetic field can emerge

spontaneously from convective turbulence
WITHOUT @-process.



What is dynamo mode excited in our DNS ?¢

= Answer : 2-process is NOT NECESSARILY.

DNS (Dlrect Numerical Slmulatlon)
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= Answer : That would be the “a*>-dynamo mode”.
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Direct Numerical Simulation
of Large-scale Dynamo




Simulation Setup

= Basic equations. : fully Compressible MHD equations
= Model : top cooling layer, middle convection & bottom radiative zones

Q is anti-parallel to g, aspect ratio: Lx/Lc, = Ly/Lc, -4

» Parameters : Pr=1.2, Pm =4, Ra = 4x10% Ro = vrms/282d ~ 0.03 @mid-CZ
pbottom/ptop ~ 10

» Horizontal Boundary: {2 y (=9) .‘
- periodic for all the variables = = _ gttt
= Vertical Boundary: 2(1) __cooling layer ((::onvectively stable) ',E
- stress-free for the velocity | convection zone L
-Bx=By=0.B,=0 @top (m=1) Z (=-1") b 2L
0.Bx = 8,By=B,=0@bottom di| ~ T SRS\ SSS—— '
- 0; T = const @bottom Voo T i
T = const @top Py P
. /| radiative zane ;
= Numerical Scheme 0.854:| (M=3: convectively stable)-----|-i
- Second-order Godunov-type ' A [ R
finite-difference scheme Zobe =TT 4L
256 (x) x 256 (y) x 128 ()] T 4. (cf., Brandenburg et al. 1996)



Properties of Rotating Stratified Convection
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= Broader and slower upflow surrounded
by narrower and faster downflow lanes
(— up-down asymmetry).

= No mean horizontal flow (and shear)
because of no symmetry breaker in
x-y (horizontal) directions.




Oscillatory Large-scale Magnetic Field
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= Mean-horizontal field with a remarkable spatiotemporal coherency
is spontaneously organized in the bulk of the convection zone.

= (By) and (By) reach maximally the equipartition field strength (Beq ~ 0.035).

» The mean-field is the strongest at around the mid-CZ and propagates
from there to top and base of the convection zone.

= A phase difference of about 7 /2 between (Bx) and (By).

= (B,) does not show any coherent signature, is dominated by turbulent field.



Kapyla, Mantere & Brandenburg (2013)

Similar DNS results have been already reported.

= Kapyla, Mantere & Brandenburg 2013

O 1000 2000 3000 4000

= They conjectured that this is a manifestation of ¢*> dynamo mode.
However, the “evidence” has not yet been exhibited.

Try to show the evidence !




DNS-driven Mean-Field Dynamo Model

~ for getting the evidence of a? dynamo mode ~

MF dynamo equation (Q2-effect is dropped):
(Given a and 7, we can solve equation)

O(Bp)
ot

=V X |(Bp) = (n+ 1)V x (Bp)] ,

o-effect turbulent
diffusion
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DNS-driven MF model ~ Modeling Procedures ~

< Stable Zone — < Convection Zone — *]_St Step
10 ! "—‘ ‘é'\'—\ : r a\
08 L (a) R n Take time & horizontal averages
R A and derive mean vertical profiles
0.6 - o ’ L¥ 5 0 .
S 1 of helicity and RMS velocity
g 04 [ :I. o G Y,
0.2 . % 2nd step
0 f a
Determine the profiles of
-0.2 dynamo coefficient ¢ and #;:
-04 1 1
0 ag(2) :—§TC(<u’ -V xu')) = —§TCHk :
| 1 1
-0.8 M (2) = 57e{(w?)) = 2 Tettiims
3 3
. \ Y
-1.0
0 020.406081.01.21.41.61.82.0 Te = I/Atrmskc) no arbitrary
*3rd step 22 ke=H,(2)/2n ~ -~ parameters !
f ™
Solve 1D MF dynamo equation (all the variables depend on ¢t and 2):
a<Bh> with non-linear
ot = VX [a<Bh> - (77 T nt)v X <Bh>] > back-reaction from MF.
B : horizontal magnetic components (c.f., Blackman & Brandenburg 02)
\ y




Nonlinear Solution: Propagating ¢*>-Dynamo Wave
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= A spatiotemporal evolution of the mean-field in the DNS
is reproduced by the MF (a¢?-dynamo) model.

= Like as the DNS, the mean-field is the strongest at around
mid-CZ and propagates from there to top and base of the
convection zone.

= A phase difference of about 7 /2 between (Bx) and (By).



Quantitative Agreements between DNS and MFM

Not only qualitatively, there are quantitative agreements.
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= The times of DNS and MF model are normalized by the same
microscopic (Spitzer’s) diffusion time throughout the radiative zone.

= All the large-scale features, cycle period, amplitude, and phase
difference in the DNS are identical to those in the MF model.

Evidences of > dynamo mode




Discussion




Discussion : Self-excited nature of ¢*-mode
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= The prolonged minimum is reminiscent of "Grand Minima" in the solar cycle.

» The minimum phase and the spontaneous revival from it would be a
manifestation of the self-excited nature of the a*>-dynamo mode.

» During the prolonged minimum, the magnetic cycle seems to continue....



Summary ~ Possibility of ¢? dynamo mode ~
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7/7a (= diiz/70)
= DNS of turbulent convective dynamo
— Oscillatory large-scale magnetic field

= DNS-driven MF a?-dynamo model
— Jarge-scale features are quantitatively reproduced.

= Message
: For the cyclic dynamo, Q-process is not necessary ingredient.
Please keep in mind the possibility of the ¢ mode in the Sun.



Our Global "Solar-type” Dynamo Simulation
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