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Why is the convection important? 
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The convection transports: 
energy → the stratification 
angular momentum → the mean field 
                (differential rotation and meridional flow) 
 
The mean flows are important for the magnetic field: 
differential rotation → generation (Ω-effect) 
meridional flow → transport (flux transport dynamo) 
 
The detailed characters of the thermal convection  
in the sun should be understood. 
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Helioseismology 
SDO/HMI inversion 

Courtesy of R. Howe 

Interesting features: 
1. Equator is accelerated 
2. Conical profile 
3. Tachocline 
4. Near surface shear layer 
 
The angular momentum  
transport and the dynamical 
balance must be understood 
 
The previous studies revealed 
mechanisms for 1, 2, and 3. 
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Angular momentum transport 

mean angular momentum 
transport by mean field 

Reynolds stress  
from turbulent field 

When we compute the turbulent thermal convection, 
the distribution of the Reynolds stress is revealed. 

Accelerated equator (1/2) 
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Accelerated equator (2/2) 
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Miesch+2000 Banana cell 

Angular momentum is transported 
equatorward by the Reynolds stress 
(Gilman+1976,1977,1988, Miesch+2000, 2005, 
Brun+2002, Käpylä+2011, Gastine+2012) 
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Conical profile and tachocline (1/3) 
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Dynamical balance on the meridional plane 

Steady 
state 

Advection term 
can be ignored 

Adiabatic  
atmosphere 

we use a value of !0 ¼ 0:8. We have chosen !0 such that the
magnitude of the differential rotation is close to solar-like.

For the diffusivities !0 and "0 we assume in the following
discussion !0 ¼ "0 ¼ 5 ; 108 m2 s"1. For cases with a super-
adiabatic convection zone we have to increase the value of "0 to
5 ; 109 m2 s"1 above rsub in order to avoid convective instability.

3.1. General Solution Properties: Differential Rotation

The key ingredient in this model is the inclusion of a sub-
adiabatic tachocline beneath the convection zone, which is en-
forced in thismodel through the uniform rotation lower boundary
condition. Within the subadiabatic region (rP 0:725 R#) the dif-
ferential rotation is balanced by a latitudinal entropy gradient.
Taking the curl of the meridional momentum equation yields for
the # component of the vorticity under the assumption of small
deviations from adiabaticity (j9"9adjT1)

@!#

@t
¼ ½: : :% þ r sin $

@"2

@z
" g

%r

@s1
@$

; ð36Þ

with " ¼ "0 þ "1; the bracket denotes viscous terms and vor-
ticity transport terms, which are not important for the following
discussion.

Starting initially with s1 ¼ 0, the turbulent angular momen-
tum transport leads to a negative value of @"2/@z in high lat-
itudes, which enforces a negative value of !#. A negative value

of !# corresponds to a counterclockwise meridional flow in
the tachocline, which shows a negative radial velocity at high
latitudes and a positive velocity at low latitudes. Because of
the subadiabatic stratification, this results in a positive entropy
perturbation in high latitudes and a negative entropy perturba-
tion in low latitudes, as shown in Figure 2b. Since the resulting
negative value of @s1/@$ can compensate for the also negative
value of @"2/@z, an equilibrium is finally reached. An addi-
tional source for the entropy perturbations comes from the me-
ridional flow driven in the convection zone and penetrating
to some extent into the subadiabatic overshoot region. For the
parameters used in this model both effects are of roughly the
same order of magnitude. In our model most of the tachocline
shear is located below the base of the convection zone, whereas
helioseismic inversions find more overlap between the tacho-
cline and the convection zone (Charbonneau et al. 1999). Our
model has therefore most probably the tendency to underesti-
mate the entropy perturbation in the overshoot region caused by
the value of @"2/@z.

Because of the turbulent thermal heat conductivity, this en-
tropy perturbation can spread into the convection zone and
therefore also balance there a differential rotation that deviates
from the Taylor-Proudman state with "-contours parallel to the
axis of rotation. We want to emphasize that the total entropy
s0 þ s1 in the overshoot region is still smaller than in the con-
vection zone. The physical reason for this spread is that the
convection tries to maintain the same radial entropy gradient at
all latitudes (if we do not consider possible rotational anisot-
ropy). Since the overshoot region provides the entropy bound-
ary condition for the convection zone, a latitudinal variation of
entropy in the overshoot region is transported by convection
into the convection zone. Stix (1981) computed response func-
tions for the temperature, velocity, and flux perturbations within
in the framework of the mixing-length approach and found that
the screening effect of temperature perturbations is very weak,
meaning that temperature (entropy) perturbations at the base of
the convection zone should be transmitted through the entire
convection zone.

The magnitude of the entropy perturbation in the convection
zone depends on the overlap between the thermal conductivity
profile and the subadiabaticity profile. For most models we use
a parameter of &"! ¼ 0:1, which means that the thermal dif-
fusivity drops to 10% of its convection zone values at r ¼
rtran ¼ 0:725 R#, but smaller values (&"! ¼ 0:025) also work if
the value of 'os is slightly increased (see cases 5 and 7). The

TABLE 1

Significant Parameters of the Simplified Model

Case k n d"! &"! 'os rsub

1........................... 15) 2 0.025 0.1 "1.5 ; 10"5 . . .
2........................... 90)"$ 2 0.025 0.1 "1.5 ; 10"5 . . .
3........................... 15) 2 0.025 0.1 0 . . .
4........................... 15) 4 0.025 0.1 "1.5 ; 10"5 . . .
5........................... 15) 2 0.025 0.1 "3 ; 10"5 . . .
6........................... 15) 2 0.05 0.1 "1.5 ; 10"5 . . .
7........................... 15) 2 0.025 0.025 "1.5 ; 10"5 . . .
8........................... 15) 2 0.025 0.1 "1.5 ; 10"5 0.8

9........................... 15) 2 0.025 0.1 "1.5 ; 10"5 0.825

10......................... 15) 2 0.025 0.1 "1.5 ; 10"5 0.85

Notes.—Cases 1–7 have adiabatic convection zones and cases 8–10 have
nonadiabatic convection zones, with the common parameters 'cz ¼ 3 ; 10"6

and 'top ¼ 3 ; 10"5 but different values of rsub, as shown in the table.

Fig. 2.—Contours of (a) differential rotation and (b) entropy perturbation for case 1. Solid lines indicate positive values. The entropy perturbation that originates
in the subadiabatic tachocline and spreads because of thermal conductivity into the convection zone prevents the Taylor-Proudman state (contours parallel to axis of
rotation) for the differential rotation from developing. (c) Contours of differential rotation for case 3. This case is similar to case 1, except that s1 ¼ 0. As a
consequence, the contour lines of constant " are aligned with the axis of rotation.
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Rempel, 2005 

In this situation 
the angular velocity  
does not change 
along the z-axis 
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Conical profile and tachocline (2/3) 
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The Astrophysical Journal, 742:79 (20pp), 2011 December 1 Brun, Miesch, & Toomre

(b)(a)

Figure 10. Differential rotation profiles of (a) angular velocity Ω contours
averaged over longitude and time. (b) Radial cuts at selected latitudes (after
averaging the northern and southern hemispheres) serve to highlight the
substantial shear layer at the base of the convection zone, effectively the
tachocline, which is naturally realized in the model.
(A color version of this figure is available in the online journal.)

efficient at exciting global resonant g modes. This is seen
in the extremely low amplitude of the wave signal near the
bottom of the simulation domain (e.g., Figure 8(c)). Even so,
the waves in our simulation are well resolved and we believe
that their propagation near the top of the radiative zone is
reliably captured. Furthermore, since the waves are dissipated
well before they reach the inner boundary, we believe that the
wave spectrum is likely not sensitive to the inner boundary
conditions. We should emphasize that few efforts have been
made to minimize thermal damping of the waves or to impose
special conditions for their reflection at the inner boundary.
We expect to do so in the near future and to compare the
wave properties and excitation to theoretical predictions (e.g.,
Goldreich & Kumar 1990; Garcia Lopez & Spruit 1991; Mathis
et al. 2008; Belkacem et al. 2009).

4. GLOBAL MEAN FLOWS AND THERMAL PROPERTIES

Our simulation has been initialized by assuming a uniform
state of rotation at all depths and latitudes. The development of
the convection instability above r ∼ 0.7R and its maturation
over several rotation periods leads to the establishment of both
large-scale axisymmetric differential rotation and of meridional
circulation (Glatzmaier & Gilman 1982; Thompson et al. 2003;
Miesch 2005; Brun & Rempel 2008; Miesch & Toomre 2009).
We here discuss their properties, focusing in particular on the
base of the convection zone.

4.1. Rotation Profile and the Tachocline

In Figure 10, we display the internal rotation profile obtained
in our model after about 2000 days of evolution, using both color
contours and radial cuts at indicated latitudes. The temporal
average spans 10 solar rotation periods. We clearly see that
a large-scale differential rotation has been established in the
convective envelope. The differential rotation has a fast equator,
slow poles, and possesses a conical shape at mid-latitude, much
as deduced by helioseismology (Thompson et al. 2003). The

(a) (b)

Figure 11. Meridional circulation averaged over longitude and time (over
10 rotation periods), shown by means of the mass flux stream function Ψ.
(a) Meridional cut over the whole domain, and (b) zoom-in on the northern
hemisphere near the tachocline. Clockwise and counterclockwise circulations
are indicated by blue and red tones respectively (and solid/dotted contours).
(A color version of this figure is available in the online journal.)

latitudinal contrast from the equator to about 60◦ at the surface of
the model is about 45 nHz, somewhat less than the solar value of
about 90 Hz. As the simulation evolves, a sharp transition from
the differentially rotating convective envelope to the uniform
rotation of the radiative interior develops. This tachocline
naturally appears in our simulation and at the time shown
in Figure 10 is about 0.10R in thickness. This is somewhat
larger than indicated by helioseismic rotational inversions which
suggest that the width of the tachocline is no more than 0.05R
(Corbard et al. 1999; Thompson et al. 2003). Even so, our global
model of the Sun thus establishes and maintains a very realistic
internal rotation profile in good agreement with helioseismic
inversions both in the convection zone and at its base. This is
a very promising result and a first step toward a full nonlinear
dynamical model of the Sun.

4.2. Meridional Flows

In Figure 11(a), we display the meridional circulation realized
in the model as contours of the meridional stream function Ψ,
defined as in Miesch et al. (2000):

r sin θ⟨ρ̄vr⟩ = −1
r

∂Ψ
∂θ

and r sin θ⟨ρ̄vθ ⟩ = ∂Ψ
∂r

.

This flow is mostly poleward in the upper convection zone
and equatorward in the lower convection zone with one primary
cell per hemisphere extending from the equator to more than
60◦ in latitude. We also note the existence of small countercells
at mid-latitudes and of a somewhat more complex multi-cell
structure near the poles. The flow amplitude is about 20 m s−1

near the top of our domain. In Figure 11(b), we display a
zoomed-in view of Ψ near the tachocline, spanning the northern
hemisphere. This allow us to assess the penetration depth of the
meridional circulation, which has been a subject of debate in
the community (Gilman & Miesch 2004; Garaud & Brummell
2008). We note that it is mostly confined above r ∼ 0.68R. This
corresponds to a penetration of 0.03R if we consider the base
of the convection as being defined by the change of sign of the
entropy gradient (rbcz). The direction of the flow is equatorward
at the base of the convection zone (as in Miesch et al. 2000),
with multiple countercells deeper in the radiative interior. These
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that crosses L contours and then turns poleward near the surface
(Figures 11(a) and 12(a)).

Above the equator but at latitudes still low enough to be
outside the tangent cylinder, the radial Reynolds stress is
negative at mid-depth, decelerating the mid-convection zone
and positive at both boundaries, thus accelerating the upper
convection zone and the overshoot region (Figure 11(c)). The
outward transport arises through the shear-induced tilting of
columnar convection cells (banana cells; see, e.g., Busse 2002)
while the inward transport arises from the buoyant deceleration
of helical downflow plumes (Miesch et al. 2000). Inside the
tangent cylinder, banana cells are suppressed and the rotation
vector is nearly vertical, promoting transport by helical plumes.
The resulting inward angular momentum transport accelerates
the rotation rate in the lower convection zone and overshoot
region (Figures 12(b) and (c)), promoting an equatorward
meridional flow by means of gyroscopic pumping (Figures 11(a)
and 12(a)).

4.4. Entropy and Temperature Fluctuations

The thermal structure of the convection zone and its cou-
pling to the tachocline play a key role in establishing the
non-cylindrical rotation profile in the solar convection zone
(Kitchatinov & Rüdiger 1995; von Rekowski & Rudiger 1998;
Durney 1999; BT02; Rempel 2005; MBT06; Balbus et al. 2009;
Brun et al. 2010, hereinafter BAC10). This is directly linked
to the so-called Taylor–Proudman constraint on rotating flows,
e.g., fast rotation tends to make flows invariant along the ro-
tation axis (cylindrical), and this constraint may be broken in
the Sun. We have just seen that our model exhibits a conical
differential rotation, with a fast equator and slow poles in good
agreement with the helioseismic inversions. This is an important
result since this feature has emerged naturally from our simula-
tion. No forcing was imposed at the base of the convection zone
to realize such a realistic profile contrary to Rempel (2005) or
MBT06. We expect baroclinic effects via the so-called thermal
wind equation (Pedlosky 1987; Zahn 1992; Durney 1999; BT02;
Balbus et al. 2009; BAC10; see the next section) to play a major
role. Thus, we now consider the thermal gradients realized in
our model and their implications with regard to maintenance of
the mean flows.

Figure 13 shows the fluctuations of entropy and temperature
with respect to the mean (spherically averaged) temperature T̄
of the model. The poleward entropy and temperature gradient
in the deep convection zone is in good agreement with previous
results, and confirms the role of latitudinal entropy variations
in maintaining solar-like (conical) rotation profiles. The mean
temperature variation in the upper convection zone is approxi-
mately 5–7 K, with a minimum at mid-latitudes. Stronger ther-
mal gradients occur near the base of the convection zone where
the latitudinal temperature variation is monotonic, increasing by
9–10 K from equator to pole. These temperature and entropy
gradients are comparable to those found in MBT06 but here
they are established self-consistently by the internal dynamics,
rather than promoted by means of a lower boundary condition. In
MBT06, imposed variations at the base of the convection zone
exceeding about 13 K yield nearly disk-like rotation profiles.
Thus, it is remarkable that the natural dynamics of the coupled
convection zone and radiative zone system in this simulation
naturally establishes thermal gradients conducive to a solar-like
rotation profile, with a strong radial gradient in the tachocline
and conical isosurfaces in the convection zone. We now address
how these thermal gradients influence mean flows.

(b)(a)

(d)(c)

Figure 13. Temporal and azimuthal average of the (a and b) entropy (S) and
(c and d) temperature (T) fluctuations realized in the simulations. Shown in the
left panels (a and c) are color contours in the full domain and in the right panels
(b and d) latitudinal cuts at various depths (solid, dotted, dashed, dash-dotted,
three-dot-dashed lines, respectively, at r = 0.96, 0.85, 0.7, 0.5, 0.3R). In the
left panels the base of the convection zone, rbcz, is indicated by a semi-circular
dashed line. Clearly evident are the relatively large fluctuations near the base
of the convection zone and tachocline, a signature of thermal wind balance (see
Section 4.6).
(A color version of this figure is available in the online journal.)

4.5. Meridional Force Balance and Baroclinicity

As published in BAC10, a general meridional balance equa-
tion can be derived that reveals the subtle role of all processes
in maintaining a non-cylindrical rotation profile that differs
from the “classical” thermal wind balance (Durney 1999; BT02;
Balbus et al. 2009). It is straightforward to use our numerical
simulation to evaluate what are the dominant terms and how this
meridional force balance comes about. Let us first recall how
such an equation is derived from the vorticity equation:

∂ω

∂t
= (ωa · ∇)v − (v · ∇)ωa − ωa(∇ · v) +

1
ρ̄2

∇ρ̄∇P

− ∇×
(

ρg

ρ̄
êr

)
− ∇×

(
1
ρ̄

∇ · D
)

, (11)
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and AB3. These are significantly more solar-like than the rotation
profile in case AB (Fig. 2a), which does not include an imposed
latitudinal entropy variation on the lower boundary.All simulations
reported here are relatively laminar, nonmagnetic, and nonpene-
trative. Turbulent transport, magnetism, and convective overshoot
all tend to reduce!" so we expect more sophisticated simulations
to exhibit smaller, possibly more solar-like angular velocity con-
trasts (Miesch et al. 2000; Brun&Toomre 2002; Brun et al. 2004).

Gilman & Howe (2003) argue that " contours from helio-
seismic inversions at low and midlatitudes, although nearly ra-
dial, may be better interpreted as having a roughly constant angle
with the rotation axis of !25". Simulations AB2 and AB3 have
a similar property as can be verified from Figures 2d and 2e.

Conical rotational profiles in our simulations are clearly as-
sociated with latitudinal entropy variations, as demonstrated in
Figure 3a, suggesting that thermal wind balance plays an impor-
tant role. The entropy variation in case AB is intermediate be-
tween cases AB0 and AB2. Here a latitudinal entropy gradient
is allowed by the lower boundary condition but is not imposed.
Convection redistributes entropy and angularmomentumsuch that
thermal wind balance is maintained in the lower convection zone,
but the resulting entropy variations are not as large as in case AB2.

The sense of the imposed entropy gradient is such that the
poles are relatively warm (high entropy). In thermal wind bal-
ance, this implies a negative (positive) value of 60 = :" in the
northern (southern) hemisphere as expressed by equation (1). If
the imposed entropy variation is weak, much of this rotational
shear is manifested in the latitudinal component of the differ-
ential rotation, which exhibits a monotonic decrease in angular

velocity toward the poles throughout the convection zone as in
case AB1. As the amplitude of the variation is increased, radial
gradients in" are established at high latitudes where the rotation
vector is nearly vertical. If an ‘ ¼ 4 component is included in
the boundary condition, then the high-latitude radial shear may
be reduced while still maintaining nearly radial angular veloc-
ity contours at midlatitudes. This is demonstrated by case AB3,
which represents our most solar-like rotation profile. Rotation
and entropy profiles for case AB3 are shown in Figures 2 and 3.

The thermal boundary condition is applied to the entropy field,
but its signature is also apparent in the temperature field (Fig. 4).
The pole-equator temperature difference in cases AB2 and AB3 is
about 10 K. It is remarkable that this relatively small variation is
enough to have a substantial influence on the differential rotation
profile (Fig. 2).

The role of baroclinic forcing in maintaining the conical ro-
tation profile in cases AB2 and AB3 can be addressed by com-
paring the left- and right-hand sides of equation (1). If these
are equal, then the system is in thermal wind balance and non-
cylindrical rotation profiles are associated with latitudinal en-
tropy gradients. The degree to which this applies in case AB3 is
illustrated in Figure 5. Thermal wind balance is approximately
satisfied in the lower convection zone, but significant departures
exist in the upper convection zone where Reynolds stresses are
no longer negligible. Similar assessments hold for the other sim-
ulations presented here and in previous work (Elliott et al. 2000;
Robinson & Chan 2001; Brun & Toomre 2002).

The amplitude and profile of the mean entropy variation in the
solar tachocline are unknown. Helioseismic structure inversions

Fig. 2.—Angular velocity profiles"(r, ! ) for each simulation, averaged over longitude and time (!300 days). Top:" in the meridional plane with contours ranging
from 310 to 470 nHz in steps of 10 nHz. Bottom: Radial profiles at selected latitudes as labeled. The " profile is most conical in case AB3. Helioseismic rotational
inversions are shown in (c) for comparison (dashed lines), obtained by an SOLA inversion of SOHOMDI data (Schou et al. 2002); the 15" curve there has been omitted
for clarity.
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are sensitive to broad thermal variations of S /CP k 10!5 (Antia
et al. 2003), which is likely not sufficient to detect the relatively
weak, localized variations associated with thermal wind balance
in the tachocline. If ! profiles from current rotational inversions
are translated into entropy gradients according to equation (1),
this implies amplitudes S /CP " 5 ; 10!6, corresponding to a
monotonic temperature increase of about 8 K from equator to
pole (Miesch 2005). This is a conservative estimate, as the width
of the tachocline may well be narrower than the resolution of the
inversion kernels, implying larger rotational gradients and thus
larger thermal variations.

The computational domain in the simulations reported here
only extends to r ¼ 0:96 R$, and the heat flux through this outer
surface is fixed and latitudinally uniform. However, if a latitu-
dinal entropy variationwere present in the solar convection zone,
it might give rise to latitudinal variations in the temperature or
irradiance at the level of the photosphere. The detection of such
signatures is complicated by magnetic effects, but photospheric
observations indicate that relative latitudinal temperature varia-
tions are no larger than a few times 10!4 (Altrock & Canfield
1972; Kuhn et al. 1988; Woodard & Libbrecht 2003). The rela-
tive thermal variations shown in Figures 3 and 4 are well within
these observational limits.

It is notable that themeridional circulation is not as sensitive to
the lower thermal boundary condition. All simulations reported
here exhibit multicelled patterns similar to case AB (Brun &
Toomre 2002) with comparable amplitudes as reflected by their
kinetic energy content (Table 1). However, systematic differences
between simulations are realized as shown in Figure 6. Those
simulations in which a substantial latitudinal entropy variation is
applied (cases AB2 and AB3) exhibit a narrow region of clock-
wise circulation near the lower boundary in the northern hemi-
sphere (counterclockwise in the southern hemisphere) that is either
absent or less pronounced in cases AB and AB1. This reflects the
mechanism by which thermal wind balance is established, as we
discuss in x 4.

The meridional circulation near the surface of the Sun is
generally poleward at latitudes<60% with an amplitude of"15–
20m s!1, but it fluctuates substantially over the course of months
and years (Hathaway 1996; Snodgrass & Dailey 1996; Haber
et al. 2002; Basu & Antia 2003; Zhao & Kosovichev 2004). Me-
ridional circulation patterns deep in the solar convection zone are

still unknown although some local helioseismic inversions have
suggested that the poleward surface flow may persist down to
"0.96 R$ and possibly deeper (Giles et al. 1997; Braun & Fan
1998). Other inversions provide evidence for multicell structure.
In particular, Haber et al. (2002) have reported a flow reversal
several Mm below the photosphere in the northern hemisphere
that lasted from 1998 until at least 2001.
The outer boundary of our simulation domain is placed at

0.96 R$ so our results cannot be compared directly with meridi-
onal circulation patterns determined from photospheric measure-
ments and local helioseismic inversions that generally focus
on r > 0:96 R$. However, near-surface flows may persist deeper
into the interior than can currently be observed. The meridional
circulation near the outer boundary of our simulations is similar
in amplitude and form to that determined from photospheric
measurements and helioseismic inversions, although poleward
flow in the simulations is generally confined to lower latitudes
(P35%; see Fig. 6).
The meridional circulation in the solar convection zone and

tachocline has important implications for modeling the 11 yr
solar activity cycle, particularly for mean-field dynamo models
of the Babcock-Leighton type (reviewed by Charbonneau 2005).
In many dynamo models, referred to as flux transport models,
the advection of magnetic flux by global circulations plays an
essential role in many aspects of the activity cycle, including
the direction of field migration, the period of magnetic field re-
versals, and the phase relationship between poloidal and toroidal
fields (Durney 1996a; Dikpati & Charbonneau 1999; Küker et al.
2001; Nandy & Choudhuri 2002). These models are generally
kinematic and assume a large-scale circulation pattern consisting
of one cell per hemisphere, counterclockwise in the north and
clockwise in the south. Recent models have also begun to con-
sider more complicated circulation patterns and have generally
concluded that the flux transport mechanism can still operate.
Charbonneau & Dikpati (2000) introduced random stochastic
fluctuations, while Dikpati et al. (2004) and Bonnanno et al.
(2005) considered multiple cells in latitude. Jouve & Brun (2005)
are the first to develop Babcock-Leighton dynamo models with
multicelled circulation patterns in radius as well as latitude,
much as in the convection simulations (Fig. 6). They find that
suchmulticelled patterns can significantly slow down the reversal

Fig. 4.—(a) Mean temperature profile in case AB3, averaged over longitude
and time. Colors and contours (spacing 1 K) represent temperature variations.
(b) Latitudinal variation of mean temperature at the lower boundary (r ¼ 0:72 R$)
for all cases.

Fig. 3.—(a) Mean entropy profile in case AB3, averaged over longitude and
time. Colors and contours (spacing 0.5) show relative variation 106S/CP. (b) Lati-
tudinal variation of mean entropy at middepth (r ¼ 0:84 R$) for all cases.
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The entropy gradient has significant role on this issue 
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Conical profile and tachocline (3/3) 
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Thermal 
convection Coriolis force 

(1) 

Effect of meridional flow 
and the subadiabatic 
radiative zone. 
(Rempel+2005) 

(2) 
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Our new challenge for  
near surface shear layer 
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What is required 
for understanding 
of near surface 
shear layer? 
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Near surface shear layer (NSSL) 
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In the near surface shear layer, the Rossby number 
is high (>10), i.e., the rotation effect is very ineffective. 
 
This means the generation mechanism for the entropy  
gradient is probably ineffective. 
 
The possible key point is the small spatial and short time 
scale convection in the near surface shear layer. 
 
High resolution calculation including near surface layer 
(>0.98Rsun) is probably required (covering both small and 
large scale convection). 
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Anelastic approximation 
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In order to avoid short time step (Δt) owing to the high 
speed of sound the anelastic approximation is frequently 
adopted, 
 
 
 
but the approximation has problems: 
1. Elliptic equation exists. ASH solves 
 it using spherical harmonics which  
 costs much in the higher resolution. 
2. The anelastic approximation is not 
 valid in the near surface shear layer. 
Other method is required for NSSL Miesch 2005 
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Reduced Speed of Sound Technique 
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Applying this transformation to equation of continuity, 
effective speed of sound is reduced by ξ times. 
No need to solve elliptic equation. 
An simple algorithm and good scaling in parallel  
computing is expected. 
We have checked the validity of this method. 
(Hotta et al., 2012, A&A, 539, A30 for details)  
We can reach near surface layer with inhomogeneous ξ 
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Result of RSST 
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Result of RSST 
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Performance 
Scale to 105 cores 
14% to peak in K 
Resolution 
384x1296x2592 
Domain 
0.715<r/Rsun<0.99 
in all the sphere 
Parameters 
Ω0/2π=413 nHz 
(solar rotation) 
Features 
Yin-Yang grid 
Realistic EOS 
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Dependence of Rossby number 
on depth 
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NSSL is established 
by the small scale  
convection in the  
near surface layer. 
Entropy gradient is 
not well established 
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Our calculation 
Ω/2π nHz 

Differential rotation 
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Mechanism for NSSL 
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generated by  
meridional flow 

generated by  
Coriolis force 

Near surface shear layer 
is maintained by the Reynolds 
stress. 
 
In the NSSL the Coriolis force 
is ineffective, and the meridional  
flow has significant role. 
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Remaining problem 
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Is solar global convection well understood? 
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Equator acceleration 
Conical profile 
Tachocline 
Near surface shear layer  

○(Gilman+1976, Miesch+2000) 
○(Rempel+2005, Miesch+2006) 
○(Brun+2011) 
○ Today’s talk 

 
However, 
There remains a fundamental problem of 
accelerated pole (Featherstone+2013, in prep) 
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Accelerated pole (1/2) 
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(a)

(b)

Fig. 2. Zonally averaged azimuthal velocity in the meridian plane for simulations with E = 10!3 and increasing R"m. Upper panels correspond to Boussinesq models (i.e.
Nq = 10!2) and lower panels to Nq = 5. Colorscales are centered around zero: prograde jets are rendered in red, retrograde jets in blue. In some cases, the prograde contours
have been truncated in amplitude to emphasize the structure of the retrograde flows. Extrema of the zonal flow velocity are indicated in the center of each panel (velocities
are expressed in Rossby number units, i.e. u/Xro). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Time-averaged toroidal kinetic energy spectra for four different numerical models with Nq = 10!2 and E = 10!3.

T. Gastine et al. / Icarus 225 (2013) 156–172 161

Fast rotation 
Slow convection 

Slow rotation 
Fast convection 

Current sun 
Gastine+2013 
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Accelerated pole (2/2) 
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The problem is that, when we adopt solar parameter: 
1.  Solar rotation (413 nHz) 
2.  Solar luminosity (3.84×1033 erg s-1) 
3.  Solar stratification (density, pressure, temperature...) 
in high resolution, i.e., small viscosity and diffusivity, 
the polar region is accelerated. 
(Featherstone and Miesch, 2013, Fan+2013) 

This means that when we adopt solar parameter,  
the reproduced convection velocity is too high, i.e.,  
too small Rossby number. 
→What did we do to reproduce solar differential rotation? 
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Energy flux is reduced 
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Our solar luminosity is 1/18 of solar one.  
The convection velocity is reduced accordingly. 
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Interestingly the solar differential rotation is reproduced 
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Small scale convection (1/2) 

25 

We hope this indicates the small scale unresolved  
convection transports substantial energy and this  
decreases the energy flux by the large scale. 

Wave number  

En
er
gy

 fl
ux

 

Input 

dissipation 

Limited by  
resolution 

The problem is we do not know the behaviour 
of small scale in the global view 
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Calculation 

Real 



Small scale convection (2/2) 
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Whose responsibility is the small scale? 
→Hinode and Solar-C 

Courtesy of Okamoto-san 
It is time to compare everything. 

High resolution 
observation 
(Hinode, Solar-C) 

Local box 
(MURaM, Stagger) 

Global scale 
(ASH, Our calculation) 

The question is “how does the small scale behave” 
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Summary 
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1. We have understood the accelerated equator, conical 
   profile, and tachocline. 
2. Our new challenge including near surface shear layer 
   reveals the maintenance mechanism for NSSL. 
3. There remains a fundamental problem related to 
   high speed of computed velocity. 
4. The small scale convection which  
   cannot be treated in the global  
   calculation might have a key role. 
5. High resolution observation can  
    give significant  
   contribution to this issue. 
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Spectra 
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Difference between  
calculation and helioseismology 

30 

1 10 100 1000
spherical harmonic degree (l)

10-3
10-2

10-1

100

101

102
103

E q
 [k

m
3  s

-2
]

Spectra@r=0.96Rsun 

ASH 

Helioseismology 

constraint of maximum 

Hinode 7 



31 Hinode 7 



Small scale convection (1/2) 
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Summary of the problem: 
1. The computed solar convection speed is too high. 
2. When we reduce the luminosity, we can reproduce  
    the differential rotation. 
 
We hope this indicates the small scale unresolved  
convection transports substantial energy and this  
decreases the energy flux by the large scale. 
 
Again, the problem is: 
We do not know the behavior of small scale convection 
in the view from global scale. 
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