Evidence of coronal nanoflares in active region moss high cadence observations

Paola Testa

(Harvard-Smithsonian Center for Astrophysics), Bart De Pontieu, Juan Martinez-Sykora, Ed DeLuca, Viggo Hansteen, the Hi-C team, Fabio Reale, Connor Robinson

Hinode 7 meeting, Nov 13 2013

The Hi-C instrument

High-resolution Coronal Imager -- Hi-C (Cirtain et al. 2013)

- 6.8'x6.8' fov
- 5.5s cadence
- 0.1"/pixel (~0.3" resolution)
- 193Å narrow passband
- Hi-C collected data for 345s (small pointing shift during flight)
- full frame 4k x 4k data: 30 full resolution images, 2s exposure
- partial frame 1k x 1k data: 86 full resolution images, 1.4s cadence

The Hi-C target and field of view

AIA 193-Å 11-Jul-2012 18:55:07

Hi-C Field of View

Hinode 7 meeting, Nov 13 2013 Tuesday, November 12, 13

Moss variability as observed by Hi-C

Moss, i.e., TR emission at the footpoints of hot loops (≥3MK) is generally slowly variable, on scales of ~ minutes (e.g., Antiochos et al. 2003, De Pontieu et al. 2003, Brooks et al. 2009)

Moss, i.e., TR emission at the footpoints of hot loops (≥3MK) is generally slowly variable, on scales of ~ minutes (e.g., Antiochos et al. 2003, De Pontieu et al. 2003, Brooks et al. 2009)

Moss, i.e., TR emission at the footpoints of hot loops (≥3MK) is generally slowly variable, on scales of ~ minutes (e.g., Antiochos et al. 2003, De Pontieu et al. 2003, Brooks et al. 2009)

• We find a small region of rapidly variable moss at footpoints of very hot and dynamic loops

Moss, i.e., TR emission at the footpoints of hot loops (≥3MK) is generally slowly variable, on scales of ~ minutes (e.g., Antiochos et al. 2003, De Pontieu et al. 2003, Brooks et al. 2009)

• We find a small region of rapidly variable moss at footpoints of very hot and dynamic loops

What makes this moss region special?

Rapidly variable moss

to highlight regions with rapid variability:

- lightcurves of running difference HiC images
- calculate the number of zero crossings -- we focus on short-lived brightenings, not on longer term trends

Rapidly variable moss: sample lightcurves

rapid variability (events as short as ~ 15 s) with increases of the order of 20-30%

Rapid variability moss regions map the footpoints of bright hot loops

Rapid variability moss regions map the footpoints of bright hot loops, and also match well the brightest 304Å regions

Can we see the moss brightenings in AIA?

• combined spatial and temporal resolution are crucial!

Can we see the moss brightenings in AIA?

• combined spatial and temporal resolution are crucial!

What can we learn about heating?

• The transition region is a very sensitive diagnostic of the heating as its timescales depend on the timescales of evolution of pressure (e.g., Klimchuck et al 2008)

What can we learn about heating?

• The transition region is a very sensitive diagnostic of the heating as its timescales depend on the timescales of evolution of pressure (e.g., Klimchuck et al 2008)

ID HD loop models for impulsive heating with different durations $\tau_{heat} = 60s$, 10s, 5s

193Å intensity integrated at loop footpoints (<3x10⁸cm) shows short duration brightenings at the 'footpoint' for short lived heating events

What can we learn about heating?

• The transition region is a very sensitive diagnostic of the heating as its timescales depend on the timescales of evolution of pressure (e.g., Klimchuck et al 2008)

ID HD loop models for impulsive heating with different durations $\tau_{heat} = 60s$, 10s, 5s

193Å intensity integrated at loop footpoints (<3x10⁸cm) shows short duration brightenings at the 'footpoint' for short lived heating events

 Rapidly variable moss is **not** observed everywhere in the AR but only where the hottest and most dynamic loops are

Estimate of energy, time scales in the events

 $E = 3 n k_B T V$

(Testa et al. 2013)

Estimate of energy, time scales in the events

 $E = 3 n k_B T V$

$$n = sqrt(\Delta EM / \ell)$$

$$V = A \times \ell = A_{pix} \times n_{pix} \times \ell$$

(Testa et al. 2013)

Estimate of energy, time scales in the events

 $E = 3 n k_B T V \qquad n = sqrt(\Delta EM / \ell)$

$$V = A \times \ell = A_{pix} \times n_{pix} \times \ell$$

 $\Delta EM = \Delta I/R(T) [= n^2 \ell]$

Estimate of energy, time scales in the events

 $E = 3 n k_B T V$

$$n = sqrt(\Delta EM / \ell)$$

$$V = A \times \ell = A_{pix} \times n_{pix} \times \ell$$

$$\Delta EM = \Delta l R(T) [= n^2 \ell]$$

Estimate of energy, time scales in the events

 $E = 3 n k_B T V$ $n = sqrt(\Delta EM / \ell)$ $V = \Delta x \ell = \Delta x r r r r \ell$

$$\Delta EM = \Delta I R(T) [= n^2 \ell]$$

for ℓ = 1000 km, logT=6.2, n_{pix}=9 (~resolution)

(Testa et al. 2013)

Estimate of energy, time scales in the events

 $E = 3 n k_B T V$

n = sqrt(
$$\Delta EM / \ell$$
)

$$V = A \times \ell = A_{pix} \times n_{pix} \times \ell$$

$$\Delta EM = \Delta I R(T) [= n^2 \ell]$$

for ℓ = 1000 km, logT=6.2, n_{pix}=9 (~resolution)

E ~ 3 x 10²³ erg

(Testa et al. 2013)

2D MHD Bifrost Simulations

2D MHD simulations (Martinez-Sykora et al. 2012); magnetic field configuration with a reconnection X point in the corona

•brightenings at the 'footpoint' (synthetic Fe VIII intensity contours)

•lightcurves show variability on timescales of the order of ~15-20s

2D MHD Bifrost Simulations

2D MHD simulations (Martinez-Sykora et al. 2012); magnetic field configuration with a reconnection X point in the corona

•brightenings at the 'footpoint' (synthetic Fe VIII intensity contours)

•lightcurves show variability on timescales of the order of ~15-20s

2D MHD Bifrost Simulations

However: this 2D model is not hot enough (T only up to ~IMK) therefore not necessarily a good comparison for our case were we have much hotter loops (\geq 4MK) and thermal conduction is going to be much more efficient

IRIS high spatial and temporal cadence TR obs

IRIS high spatial and temporal cadence TR obs

Hi-C provided the highest spatial and temporal resolution solar coronal images ever taken revealing dynamics and structuring down to the limit of the resolution:

- Evidence of impulsive, "nanoflare", coronal heating
- Rapidly variable moss is **not** observed everywhere in the AR but only where the hottest and most dynamic loops are.
- Even if the moss observations do not allow to exclude heating in the TR, the observed correlation with the coronal and magnetic features suggest that the rapid variability is due to reconnection events and consequent energy release in the corona (nanoflares)
- high spatial and temporal resolution IRIS observations (with AIA, and XRT) will allow us to investigate the TR response to coronal nanoflares, and the mechanism of energy transport (conduction vs. beams; see e.g., Brosius & Holman 2012)