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1. The application of sparse Bayesian 
inference to the DEM problem

• Guennou et al. 2013 - uncertainty in 
the atomic data is underestimated

see poster S3 P25



SDO/HMI

2. Active Region Modeling: Reproducing
• Temperature structure (DEM)
• Temporal variability
• Flux-luminosity relationship



3. HOP 130, Atomic Physics, and the EIS Calibration

EIS Fe XV 284.16 Å



Sparse Bayesian Inference and the 
Temperature Structure of the Solar Corona
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A “SuperSet” of Least Squares:
Bayesian Inference

P (M | D) =
P (D | M)P (M)

P (D)

posterior
likelihood prior
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Bayes’ Theorem



Sparse Bayesian Inference:
The Relevance Vector Machine [RVM]
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Student-t distribution

Michael Tipping, Microsoft Research
Journal of Machine Learning Research (2001)
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After much gnashing of teeth
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RVM vs Least Squares
Magic!



Positivity:  A Fly in the Ointment!
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a simple solution

Positivity is not built in. How do we do the DEM problem?

but this breaks Tipping’s iterative scheme
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Exploring the Posterior:
Markov Chain Monte Carlo and Metropolis-Hastings

we need to explore the posterior

move to where the posterior is 
highest,

but not always

The Metropolis-Hastings Algorithm

consider w ! w0

accept if: P (D | w0
) > P (D | w)

or if: u < P (D | w0
)/P (D | w) u 2 [0, 1]



The DEM “Library”
RVMInput MCMC Kashyap & Drake 1998



Application to Observations

• Similar to previous results
• Slow! For speed see Hannah & Kontar (2012)
• Doesn’t address errors in atomic data
• BUT, we know how to balance uncertainty 

and complexity



Modeling Solar Active Regions











NLFF: Wiegelmann et al. (2012)



NLFF: Wiegelmann et al. (2012)EBTELv2:  Cargill et al. (2012)
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The Flux-Luminosity Relationship

Reproduced for all heating scenarios. B/L works!
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The EIS Calibration



Example HOP 130 EIS Data



EIS and EVE Irradiance Data



Inferring the EIS Effective Areas
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Checking the Revised Effective Areas
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• see Del Zanna A&A (2013), Warren et al. astro-ph (2013)

• Active Region Modeling

• Work in progress

• Need to reproduce DEM, flux-luminosity, variability

• High frequency heating is “winning” . . . ?

• Sparse Bayesian Inference

• Promising!

• Errors in the atomic data need to be addressed

• Not magic! - Still limitations to DEM (e.g., Testa et al 2012)

Summary


