Saturation of Stellar Winds from Young Suns

Takeru K. Suzuki

Department of Physics, Nagoya University

Nov. 14th., 2013

Suzuki, T. K.¹, Imada, S.², Kataoka, R.³, Kato, Y.⁴, Matsumoto, T.¹, Miyahara, H.⁵, Tsuneta S.⁶, 2013 (Oct.25th.), PASJ, 65, 98

1: Physics, Nagoya U; 2: STELab, Nagoya U.; 3: NIPR; 4:NAOJ;

5: Musashino Art U.; 6: ISAS/JAXA

Solar-type Stars

Young Solar-type Stars:

- Active: larger L_X & M
 - $L_{\rm X} \lesssim 1000 \times L_{\rm X,\odot} \& \dot{M} \lesssim 100 \times \dot{M}_{\odot}$
- Saturation of wind for very active stars
 - blocked by closed structure ?

Outline

Aim of Work:

Extending our MHD simulations for Alfvén wave-driven solar wind from the present Sun to young active suns.

• Corona & Wind in open flux tubes.

Open flux tubes on the Sun

Br ______ 00 0 1000 2000

HINODE Obs:Tsuneta et al.2008; Shimojo et al.2009; Itoh et al.2010; Shiota et al.2012

~1kG at the photosphere & 1-10G in the corona

 \Rightarrow Super-radially open flux tubes (100–1000 times)

Alfvén(ic) wave-driven wind

Alfvén Wave-driven wind

Observation

Get information of $z_{\pm} = \delta v \mp \delta B / \sqrt{4\pi\rho}$

(Fujimura & Tsuneta 2009)

Other obs. Okamoto et al.2007; Tomczyk et al.2007;

Simulation Region

- cool photosph. & chromosph. ⇔ hot corona & wind
- huge density contrast (photosphere ⇐ 8-10 orders of mag. ⇒ corona)

Simulation from Photosphere (many obs. data): Forward-type simulations $\Rightarrow \dot{M}$.

Simulations for the present Sun

Focus on the dynamics in a single open flux tube 1D (1.5D) 2D (2.5D)

(mesh#: 14,000)

Solar Wind Simulation (1D)

Solar-type Stars

Young Solar-type Stars:

- Active: larger L_X & M
 - $L_{\rm X} \lesssim 1000 \times L_{\rm X,\odot} \& \dot{M} \lesssim 100 \times \dot{M}_{\odot}$
- Saturation of wind for very active stars
 - blocked by closed structure ?

performed 163 runs

4 parameters in our simulations

- $B_0 = (0.5 16) \text{ kG}$
- $\delta v_0 = (0.7 7.6)$ km/s
- filling factor of open flux tubes $f_0 = (1/800 1/6400)$
- Loop Height $h_1 = (0.01 0.1)R_{\odot}$

" $F_{\rm X}$ - \dot{M} "

Suzuki et al.2013

" $F_{\rm X}$ - \dot{M} "

Suzuki et al.2013

" $F_{\rm X}$ - \dot{M} "

Suzuki et al.2013

Surface Poynting $E.\Rightarrow$ Wind K. E.

Different colors \Leftrightarrow $(B_{r,0}f_0)$ (average B_0 in open flux regions)

- x-axis: Injected Alfvén wave energy, $L_A f_0$
- *y*-axis: Wind K.E., $L_{K,out} = \dot{M}\frac{\tau_r}{2}$ Energy Conversion Rate : 0.1-10%

" $F_{\rm X}$ - \dot{M} "

Suzuki et al.2013

" $F_{\rm X}$ - \dot{M} "

Suzuki et al.2013

Extended Chromosphere in Active Stars

Gas Lifted up by $\delta B^2 \Rightarrow$ Extended Chromosphere $\Rightarrow v_{\rm A}$ changes more slowly. \Rightarrow suppression of wave reflection.

Hollweg 1984; Moore et al.1991 • Reflection test

Reflection in Chromosphere

Smaller $(L_A f)_0$ suffers more reflection (transmissivity < 1%).

Reflection test

Extended Chromosphere in Active Suns

Rossiter-McLaughlin effect

(planet eclipse) by

A snapshot of one case

Chromosphere (Ca II H& K lines)

Very thick chromosphere $(\sim 0.1R_{\star})$ in the active case.

Czesla et al.2012 $r_{\rm chrm} - R_{\star} \approx 0.16 R_{\star}$ *c.f.* Present Sun: $\leq 0.005 R_{\odot}$

" $F_{\rm X}$ - \dot{M} "

Suzuki et al.2013

" $F_{\rm X}$ - \dot{M} "

Suzuki et al.2013

Wind Energetics

Pick up dominant terms ('tc'= Top of Chromosphere): $L_{\text{K,out}} \approx (L_{\text{A,+}}f)_{\text{tc}} - (L_{\text{R}}f)_{\text{tc}} - (L_{\text{G}}f)_{\text{tc}}$ Wind K.E. \leftarrow (Net +Wave E.)-(Rad.Loss)-(Grav.Loss) Conductive loss is included in (Rad.Loss) $L_{\rm K,out} \equiv \dot{M} \frac{\sigma_r}{2}$ $L_{\rm K}$ or $L_{\mathrm{A},\pm}f \equiv \mp \Phi_B \frac{v_\perp B_\perp}{4\pi}$ Energy flux of Alfvén waves $(L_{\rm G}f)_{\rm tc}$ $(L_{\rm G}f)_0 \equiv \dot{M} \frac{GM_{\odot}}{r_0}$ $(L_{\rm R}f)_{\rm tc}$ $(L_{\rm A}f)_{\rm tc}$ Transition Region Reflection $(L_{\rm R}f)_0 \equiv 4\pi \int_{r_0}^{r_{\rm out}} q_{\rm R}r^2 f dr$ $(L_A f)_0$

Saturation of Wind by Radiation Loss

 $L_{\text{K,out}} \approx (L_{\text{A}}f)_{\text{tc}} - (L_{\text{R}}f)_{\text{tc}} - (L_{\text{G}}f)_{\text{tc}}$ Wind K.E. \Leftarrow (Net Wave E.) - (Rad.Loss) - (Grav.Loss)

- As *L*_A **↑**
 - $L_{\rm R}/L_{\rm A}$ $\ \ L_{\rm R} \propto
 ho^2$ (optically thin)
 - $L_{\rm K}/L_{\rm A} \Downarrow$

With increasing the injected Alfvén waves, most of the energy is used up by the radiation loss. ⇒ No more energy for the stellar wind.

" $F_{\rm X}$ - \dot{M} "

Suzuki et al.2013

Summary

Young Solar-type Stars: Active

- \dot{M} : ≤ 100 times.
- X-rays: ≤ 1000 times.

MHD simulations extending from the present Sun:

- When the energy inputs from the surface ↑
 - rapid increase of wind $\dot{M} \leftarrow$ wave reflection \Downarrow
 - eventiually saturate by radiation loss (X/EUV) ↑ Saturation level $\Leftrightarrow B$
- Extended Chromosphere in Active Stars ⇔ Observation by planet eclipse
- If $\dot{M} \sim 1000 \dot{M}_{\odot}$ during initial $\sim 10^9$ yr \Leftrightarrow Early Faint Sun Paradox
- $F_{\rm X} t$ diagram $\Rightarrow \dot{M} \propto t^{-1.23}$

Limitations: 1D, no-rotation,... ⇒ Shelyag et al.S2-P-06; Morton et al. S2-P-08; Hiller et al.S2-P-09 Pinto & Brun S2-P-15

Wind Energetics

Pick up dominant terms: $L_{\text{K.out}} \approx (L_{\text{A.+}}f)_0 - (L_{\text{A.-}}f)_0 - (L_{\text{R}}f)_0 - (L_{\text{G}}f)_0$ Wind K.E.
(Wave E.)-(Reflection)-(Grav.Loss)-(Rad.Loss) $L_{\rm K,out} \equiv \dot{M} \frac{v_r^2}{2}$ $L_{\rm A,\pm}f \equiv \mp \Phi_B \frac{v_\perp B_\perp}{4\pi}$ Energy flux of Alfvén waves $(L_{\rm G}f)_{\rm tc}$ $(L_{\rm G}f)_0 \equiv \dot{M} \frac{GM_{\odot}}{r_0}$ $(L_{\rm R}f)_{\rm tc}$ $(L_A f)_{tc}$ Transition Region Reflection $(L_{\rm R}f)_0 \equiv 4\pi \int_{r_0}^{r_{\rm out}} q_{\rm R}r^2 f dr$ $(L_A f)_0$

Focusing on Reflection in Chromosphere

Pick up dominant terms: $L_{\text{K,out}} \approx (L_{\text{A,+}f})_0 - (L_{\text{A,-}f})_0 - (L_{\text{R}}f)_0 - (L_{\text{G}}f)_0$ Wind K.E.
(Wave E.)-(Reflection)-(Grav.Loss)-(Rad.Loss) $L_{\rm K,out} \equiv \dot{M} \frac{v_r^2}{2}$ $L_{\rm A,\pm}f \equiv \mp \Phi_B \frac{v_\perp B_\perp}{4\pi}$ Energy flux of Alfvén waves $(L_{\rm G}f)_{\rm tc}$ $(L_{\rm G}f)_0 \equiv \dot{M} \frac{GM_{\odot}}{r_0}$ $(L_{\rm R}f)_{\rm tc}$ $(L_A f)_{tc}$ Transition Region Reflection $(L_{\rm R}f)_0 \equiv 4\pi \int_{r_0}^{r_{\rm out}} q_{\rm R}r^2 f dr$ $(L_A f)_0$