# **Revealing the nature of magnetic halos and shadows with radiation MHD simulations**

Oskar Steiner<sup>1,2</sup>, Christian Nutto<sup>1</sup> & Markus Roth<sup>1</sup>, <sup>1</sup>Kiepenheuer–Institut für Sonnenphysik, Freiburg, Germany <sup>2</sup>Istituto Ricerche Solari, Locarno, Switzerland

## —— What are magnetic halos and shadows?

The magnetic halo is an enhancement in the high-frequency (non-trapped) wave power in areas surrounding active regions and network elements both in the photosphere (Brown et al. 1992) and in the chromosphere (Braun et al. 1992; Toner and Labonte 1993) of the Sun. The *magnetic shadow*, on the other hand, is a narrow seam of reduced power surrounding these regions, seen in high-frequency chromospheric intensity and velocity oscillations (Judge et al. 2001; Vecchio et al. 2007b; Kontogiannis et al. 2010a, 2010b; Rajaguru et al. 2012).

*Figure 1b* shows a *magnetogram* of a field-of-view of 53"x 53" of the solar surface. *Figure 1h* is the corresponding *power map* of the Doppler velocity of the chromospheric line Ca II 854.2 nm in the frequency range 5.5-8.0 mHz, which samples freely propagating waves above the cutoff period. It shows the magnetic halo in the wider surrounding of the magnetic patches and the *magnetic shadow* as a seam of suppressed power in the closer surroundings of the magnetic patches.

### —— 3-D radiation MHD simulations –

We carried out 3-D radiation MHD simulations of the surface layers of the Sun, encompassing a field-of-view of 6"× 6", using the CO<sup>5</sup>BOLD-code (Freytag et al., 2012). An artificial acoustic source, placed at the bottom boundary at a depth of 1.4 Mm below the optical depth  $\tau_{2} = 1$ , generates outward traveling, plane parallel, acoustic waves of frequency 10 mHz. Fig. 2, left is a snapshot of the simulation showing the bolometric intensity. It displays the typical granular structure of the solar surface. Fig. 2, middle shows the magnetic field strength averaged over a time period of 1250 s. Three major patches of magnetic flux concentrations have formed. Fig. 2, right shows the power map of the vertical velocity perturbation on an optical depth surface located in the lower chromosphere of the simulation ( $\tau_{2} = 6.7 \times 10^{-5}$ ). The simulation clearly reproduces the *magnetic shadow* (reduced power in the area between the large and the small ellipses) and the enhanced power of the *magnetic* halo (yellow regions). White contours delineate locations for which sound speed and Alfvén speed are equal.

# **——** Interpretation

Figure 3 sketches the physics behind the magnetic shadow and halo. In the peripheral region of the magnetic flux concentration (green), acoustic waves enter the region above the dashed curve where the magnetic field dominates the thermal gas pressure (low  $\beta$ , region). There, they convert to *fast, predominantly magnetic waves*, which refract further above because of the steep increase in the Alfvén speed with height. After refraction, the waves travel back into the Sun again, and convert back to acoustic waves. Three such refractive wave paths are indicated in red. The apex of the inner wave train falls into the layers of the employed chromospheric diagnostics (blue band), and because its wave vector is close to horizontal there, the vertical velocity perturbation vanishes and with it the power in the Doppler velocity, hence the *magnetic shadow*.

Further out, the downward traveling refracted waves interfere with the continuing incident fast acoustic waves within the diagnostics region, which leads to excess power, hence the *magnetic halo*.

In the center of the magnetic flux concentration, the wave vector of the incident acoustic wave is parallel to the magnetic field, which impedes wave conversion, leaving it a *slow, predominantly acoustic wave*, which causes the residual power in the center of the flux concentration, within the small ellipses of Fig. 2, right. Figure from *Komm et al. (2013)*.









Figure 1: Observations: b) MDI magnetogram of a field-of-view of 53"×53" of the solar surface. Three magnetic patches (network elements) can readily be seen. h) Power map of the Doppler velocity of the chromospheric line Ca II 854.2 nm in the frequency range 5.5-8.0 mHz. The excess power in the wider surroundings of the magnetic patches is the *magnetic halo*—the lack of power in the closer surroundings is the magnetic shadow. Figures from Vecchio et al. (2007).



Figure 2: Simulations: Left: Snapshot of the intensity. Granules of the solar surface are visible. White contours localize magnetic fields with a strength of  $B_{vort} \ge 1$  kG. *Middle:* Time average of the magnetic field strength over 1250 s. *Right:* Power map of the vertical velocity perturbation,  $\delta vz$ , in the lower chromosphere. The three inner ellipses mark regions of magnetic flux concentrations. Between the large and the small ellipses, the characteristic annulus of suppressed power of the *magnetic shadow* is apparent. Excess power corresponds to locations of the magnetic halo. Adapted from Nutto et al. (2012).

#### **References**

Braun, D. C., Lindsey, C., Fan, Y., & Jefferies, S. M.: 1995, Local acoustic diagnostics of the solar interior. ApJ 392, 739

Freytag, B., Steffen, M., Ludwig, H.-G., Wedemeyer-Böhm, S., Schaffenberger, W., & Steiner, O.: 2012, Simulations of stellar convection with CO5BOLD, J. Comput Phys. 231, 919 Judge, P.G., Tarbell, T.D., & Wilhelm, K.: 2001, A study of chromospheric oscillations using the SOHO and TRACE spacecraft, ApJ 554, 424

Komm, R., De Moortel, I., Fan, Y., Ilonidis, S., & Steiner, O.: 2013, Sub-photosphere to solar atmosphere connection, in Proc. of the ISSI workshop Helioseismology and Dynamics of the Solar Interior, L. Culhane (ed), Space Sci. Rev.

Kontogiannis, I., Tsiropoula, G., & Tziotziou, K.: 2010a, Power halo and magnetic shadow in a solar quiet region observed in the Ha line, A&A 510, A41

Kontogiannis, I., Tsiropoula, G., Tziotziou, K., & Georgoulis, M. K.: 2010b, Oscillations in a net work region observed in the Ha line and their relation to the magnetic field, A&A 524, A12 Nutto, C., Steiner, O., & Roth, M.: 2012, Revealing the nature of magnetic shadows with numer ical 3D-MHD simulations, A&A 542, L30

Rajaguru, S. P., Couvidat, S., Sun, X., Hayashi, K., & Schunker, H.: 2012, Properties of High-Frequency Wave Power Halos Around Active Regions: An Analysis of Multi-height Data from HMI and AIA Onboard SDO, Sol. Phys. 287, 107

Toner, C. G. & Labonte, B. J.: 1993, Direct Mapping of Solar Acoustic Power, ApJ 415, 847 Vecchio, A., Cauzzi, G., Reardon, K. P., Janssen, K., & Rimmele, T.: 2007, Solar atmospheric oscillations and the chromospheric magnetic topology, A&A 461, L1