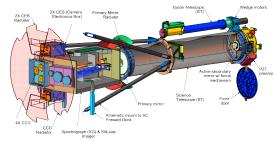
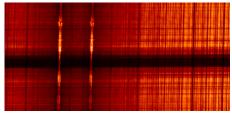
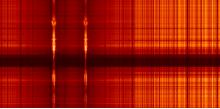

Initial Calibration and Performance of the IRIS Instrument


J-P. Wülser¹, T. Tarbell¹, B. De Pontieu¹, J. Wolfson¹, P. Boerner¹, J. Lemen¹, N. Hurlburt¹, A. Title¹, C. Schrijver¹, R. Bush², L. Kleint³, B. Lites⁴, S. McIntosh⁴, S. Jaeggli⁵, C. Kankelborg⁵, E. DeLuca⁶, L.Golub⁶, S.McKillop⁶, K.Reeves⁶, S.Saar⁶, P.Testa⁶, H.Tian⁶, M.Weber⁶, V.Hansteen⁷, M.Carlsson⁷

¹Lockheed Martin Solar & Astrophysics Laboratory, ²Stanford University, ³BAERI, ⁴High Altitude Observatory, ⁵Montana State University, ⁶Harvard-Smithsonian Center for Astrophysics, ⁷University of Oslo


- NASA Small Explorer mission
- Primary objective: Understand how the solar atmosphere is energized
- · Successful launch 2013 June 27
- · IRIS performs very well on orbit
- · High resolution spectra
 - FUV: 1332 1358 Å 1389 - 1407 Å
 - NUV: 2783 2835 Å
- · Slit-jaw images
 - FUV: 1330 Å (C II)
 - 1400 Å (Si IV)
 - NUV: 2796 Å (Mg II k) 2832 Å (Mg II wing)
- Field of view: 3 arcmin
- · Spatial resolution: 0.4 arcsec

Interface Region Imaging Spectrograph (IRIS)



Flat-field, distortion correction, common plate scale

Raw NUV spectrum at the slit location shown in the image on the right

Corrected NUV spectrum: Mg II k & h; dark horizontal band is sunspot

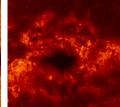
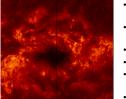



Image in Mg II k showing slit

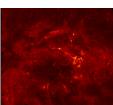
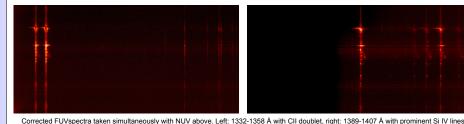
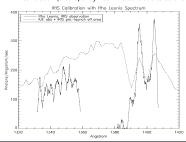
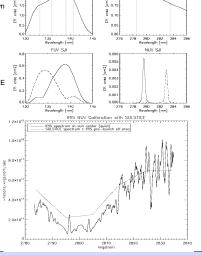
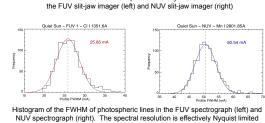



Image in 1400 Å Si IV channel

- Images and spectra taken at 05:38 UT on 2013-Oct-25
- Processing with SSW iris_prep.pro
- Dark subtraction
- Flat-field
- Geometric distortion correction
- Common plate scale
- Spatial alignment using two fiducial marks (gaps) in slit
- Wavelength calibration via photospheric NUV line
 - · Correct for orbital shifts
 - Correct for thermally induced shifts
- · Absolute spatial alignment via AIA 1600 Å images




Spatial & spectral resolution, modulation transfer function


0.6

Absolute throughput: stellar calibration

- Results of the pre-launch (component-wise) calibration are shown in the four panels on the right
- FUV throughput verified post-launch by observing Rho Leonis Bottom left: IRIS spectrum (solid line) and IUE reference spectrum from IUE folded with pre-launch IRIS response
 - IRIS measurements of Si IV lines agree very well with IUE+IRIS prelaunch calibration
- IRIS short FUV (1330-1358 Å) response is about 30% low than pre-launch calibration
- NUV throughput verified by comparison with SOLSTICE / SORCE
- easurements in July 2013 (bottom right) Mg II wing measurements agree very well with pre-launch
- calibration (discrepancy near line core due to solar activity)

MTF and PSF derived from phase diversity measurements for