List of Posters

Session 1. Magnetic Fields and Solar Cycle

ID		Presenter	Title
S1- P- 01	Y.	Masada	Large-scale Magnetic Field and Al Convective Dynamo SimulationChanged to be an oral talkTurbulent
S1- P- 02	J.	Нао	Solar cycle variation of helicity characteristics
S1- P- 03	B. W.	Lites	THE SOLAR CYCLE DEPENDENCE OF THE WEAKEST INTERNETWORK FLUX
S1- P- 04	V. K.	VERMA	On Long-Term Period of North-South Asymmetry of Solar Phenomena
S1- P- 05	D.	Shukuya	Study on Asymmetry of Solar Polar Field Reversal between the North and South Hemisphere
S1- P- 06	M.	Gosic	<i>Temporal evolution of the quiet Sun magnetic fields inside supergranular cells</i>
S1- P- 07	L.	Kleint	Emission above sunspot umbrae
S1- P- 08	J.	de la Cruz Rodriguez	Physical properties of a sunspot chromosphere with umbral flashes
S1- P- 09	J.	Jurcak	Evolution of penumbral filaments in forming sunspot
S1- P- 10	S. K.	Tiwari	Structure of sunspot penumbral filaments as obtained by spatially coupled inversion of Hinode (SOT/SP) data
S1- P- 11	S.	Esteban Pozuelo	Temporal evolution of the velocity of lateral downflows in sunspot's penumbra
S1- P- 12	V.	Bommier	Magnetometry from HINODE/SOT/SP data: solving the fundamental ambiguity from the 6301/6302 line pair inversion
S1- P- 13	A. J.	Kaithakkal	The Association of Polar Faculae with Polar Magnetic Patches Examined with Hinode/SOT-SP Observations
S1- P- 14	Y.	Suematsu	Study of 3D Fine-Scale Structure and Dynamics of Solar Polar Faculae
S1- P- 15	G. B.	Scharmer	<i>SST/CRISP observations of penumbral convective flows in the Fe I 5576</i> <i>and 6301/6302 lines</i>
S1- P- 16	Y.	Iida	Displacement of patch structures and its insight to magnetic flux transport in magneto-convection system
S1- P- 17	S.	Thonhofer	Parallelization of the SIR Code for the investigation of the dynamics of magnetic flux tubes
S1- P- 18	D.	Utz	The evolution of important magnetic bright point parameters
S1- P- 19	H.	Iijima	Kinetic and magnetic power spectra in the supergranular-scale convection studied by three-dimensional radiative magnetohydrodynamic simulations
S1- P- 20	G.	Vissers	Center-to-limb variation in Ellerman bombs observed in Halpha and 1700 A
S1- P- 21	L.	Rouppe van der Voort	Small-scale dynamic fibrils in sunspot chromospheres
S1- P- 22	R. A.	Shine	Hinode/SOT and IRIS observations of Sunspot and Chromospheric Oscillations
S1- P- 23	I.	Piantschitsch	Simulation of the dynamics of small scale magnetic fields in the lower solar atmosphere in regards of the atmospheric heating problem
S1- P- 24	0.	Steiner	Recent RMHD simulations with CO5BOLD
S1- P- 25	B.	Lemmerer	Detection and analysis of small scale convective patterns observed with Hinode compared to RHD simulations
S1- P- 26	R.	Kano	Relation between magnetic fields and horizontal velocity in an active region

S1- P- 27	М.	van Noort	Very strong magnetic fields in supersonic downflows
S1- P- 28	T.	Fukuoka	The photospheric magnetic field measurement with Tandem Etalon Magnetogprah (TEC) of SMART telescope at Hida Observatory
S1- P- 29	K.	Otsuji	Statistical Analysis of Current Helicity Using Hinode/SOT SP Data
S1- P- 30	G.	Giono	Spatially Resolved images of the Corona and EUV & UV Irradiance Variability
S1- P- 31	M. L.	DeRosa	How Spatial Resolution in Boundar Extrapolations Changed to be an oral talk etic Field
S1- P- 32	L. A.	Rachmeler	Transition from two helmet streamers into a coronal pseudostreamer
S1- P- 33	K.	Iwai	Measurements of Coronal and Chromospheric Magnetic Fields using Polarization Observations by the Nobeyama Radioheliograph
S1- P- 34	Y.	Tanaka	Longitudinal structure of the polar field reversal and decadal trend of the sunspot's gyroresonance emissions in 17 GHz

Session 2. Atmospheric and Interior Couplings

ID		Presenter	Title
S2- P- 01	М.	Carlsson	First Comparison between IRIS Data and Numerical Models
S2- P- 02	B.	Rathore	Diagnostic potential of CII lines for NASA/SMEX mission IRIS.
S2- P- 03	J.	Leenaarts	The formation of the Mg II h&k lines in the solar atmosphere
S2- P- 04	T.	Van Doorsselaere	Forward modelling of solar atmospheric structures and their oscillations
S2- P- 05	0.	Steiner	<i>Revealing the nature of magnetic halos and shadows with numerical 3D-MHD simulations</i>
S2- P- 06	S.	Shelyag	Spectropolarimetric signatures of photospheric intergranular vortices
S2- P- 07	P. S.	Cally	Coupling Interior and Atmosphere through Active Regions
S2- P- 08	R.	Morton	<i>Observations of the excitation and damping of Alfvenic waves throughout the solar atmosphere</i>
S2- P- 09	A. S.	Hillier	A statistical study of prominence oscillations: Evidence for photospheric motions as the transverse wave driver in a quiescent prominence
S2- P- 10	E.	Dzifcakova	Kappa-distributions and the Differential Emission Measure of Active Regions
S2- P- 11	R.	Soler	Seismic inference of physical parameters in solar prominences using observations of their fine structure oscillations
S2- P- 12	R.	Kitai	Morphological study of penumbral formation
S2- P- 13	S.	Wedemeyer	Magnetic tornadoes on the Sun
S2- P- 14	R. A.	Maurya	Changes in High Degree p-mode parameters with Magnetic and Flare Activities
S2- P- 15	R. F.	Pinto	Solar wind and coronal rotation during an activity cycle.
S2- P- 16	F.	Chen	A coupled model for the formation of active region corona
S2- P- 17	S.	Nozawa	Relationship between satellite anomalies and space weather
S2- P- 18	A.	Ohkawa	Analysis of Sunspot oscillations observed with DST/Hida
S2- P- 19	S.	Sawada	Magnetic field of active region filaments observed with DST/Hida

S2- P- 20	Y.	Kato	Simultaneous multi-line observation of Ellerman bombs using the DST in Hida observatory
S2- P- 21	R.	Sato	Numerical study on the generation of waves by asymmetrical magnetic reconnection
S2- P- 22	B.	Fleck	On the Signature of Waves and Oscillations in IRIS Observations

Session 3. Co	oronal l	Heating and Solar	Wind Acceleration
<u> </u>		Presenter	litte
S3- P- 01	B.	De Pontieu	First IRIS observations of lower solar atmospheric activity
S3- P- 02	НН.	Lin	<i>The formation of the OI 135.56 nm and CI 135.58 nm lines in solar atmosphere</i>
S3- P- 03	J.	Okamoto	Hinode-IRIS observations of prominences
S3- P- 04	JP.	Wuelser	Initial Calibration and Performance of the IRIS Instrument
S3- P- 05	Y.	Kato	Chromospheric and Coronal Wave Generation in the Network Magnetic Elements Through the Magnetic Pumping
S3- P- 06	Н.	Skogsrud	Torsional motion of spicules
S3- P- 07	N.	Kitagawa	Spatial and temporal correspondence between enhanced blue wing observed with Hinode/EIS and propagating disturbances in fan loops seen in AIA images
S3- P- 08	S.	UeNo	<i>Report of Cooperative Observations between Hida Observatory & Hinode Satellite (HOP0012, 0075, 0128)</i>
S3- P- 09	T. P.	Golding	Non-equilibrium helium ionization and its effects on the He II 304 and He I 10830 lines
S3- P- 10	KS.	Lee	Spectroscopic properties of a dark lane and a cool loop in a limb active region observed by Hinode/EIS
S3- P- 11	S.	Parenti	Off-limb hot thermal structure of AR 11459
S3- P- 12	M.	Asgari-Targhi	Observational signatures of Alfven Wave Turbulence
S3- P- 13	I.	Arregui	How to determine the physical parameters that govern wave dissipation time and spatial scales
S3- P- 14	B. N.	Dwivedi	On the Signature of Alfven Wave Dissipation in the Localized Coronal Funnel as a Source of Nascent Solar Wind
S3- P- 15	R.	Morton	<i>Hi-C and AIA observations of transverse magnetohydrodynamic waves in active</i>
S3- P- 16	A. R.	Winebarger	Fine-scale Fluctuations in the Corona observed with Hi-C
S3- P- 17	Н.	Peter	Structure of solar coronal loops: from miniature to large-scale
S3- P- 18	Н.	Peter	Constant cross section of loops in the solar corona
S3- P- 19	V.	Joulin	Distributions of energy of EUV bright points in the solar corona
S3- P- 20	K.	Olluri	Synthezided spectra of optically thin emission lines produced by the Bifrost stellar atmosphere code
S3- P- 21	Τ.	Yokoyama	Magnetothermal Instability in the Solar Atmosphere
S3- P- 22	T.	van Wettum	The response of the corona to different heating mechanisms.
S3- P- 23	E.	Dzifcakova	Synthetic spectra for the kappa-distributions using modified CHIANTI

S3- P- 24	Р.	Antolin	Forward modelling of MHD kink oscillations in the solar corona
S3- P- 25	C.	Guennou	Can the Differential Emission Measure diagnostic be used to constrain the timescale of energy deposition in the corona?
S3- P- 26	M.	Weber	What DEM Analysis Can and Cannot Tell Us
S3- P- 27	M.	Hahn	<i>Quantification of the Energy Dissipated by Alfven Waves in a Polar</i> <i>Coronal Hole</i>
S3- P- 28	M.	Hahn	Anisotropic Ion Temperatures, Non-Thermal Velocities, and Doppler Shifts in a Coronal Hole
S3- P- 29	P.	Kayshap	On the Coronal Reconnection Height and Hot Jet Formation in the North Polar Coronal Hole (NPCH) as Observed by Hinode/EIS
S3- P- 30	Т.	Suda	Double-thread structure of spicules generated by magnetic reconnection

Session 4. Flares and Coronal Mass Ejections

ID	Pr	resenter	Title
S4- P- 01	V.H.Ha	ansteen	`Realistic' 3D simulations of a small flare resulting from flux emergence
S4- P- 02	T. Ka	aneko	MHD Simulation of Filament Formation by Thermal Instability
S4- P- 03	T. Ka	aneko	MHD Simulation of Plasma Eruption by Interaction between Emerging Flux and Coronal Arcade Field
S4- P- 04	T. Na	akabo	Simulation study of magnetic reconnection in high magnetic Reynolds number plasmas
S4- P- 05	R.F. Pir	nto	Thermal x-ray emission in flaring coronal loops
S4- P- 06	K. Ni	shida	The Role of a Flux Rope Ejection in Three-dimensional Magnetohydrodynamic Simulation of a Solar Flare
S4- P- 07	L. Ni		Reconnection in partially ionized plasma with radiation cooling]{Fast magnetic reconnection with multiple plasmoids applied in the partially ionized plasma
S4- P- 08	S. Wa	ang	Analysis on Mechanisms of Reconnection Rate Enhancement in 3D MHD simulation of a Current Sheet
S4- P- 09	T. Sh	imizu	<i>Three-dimensional instability of spontaneous fast magnetic reconnection in solar flares</i>
S4- P- 10	A. Be	erlicki	Ellerman bombs - physical parameters derived from high-resolution multiline spectroscopic observations
S4- P- 11	A.R. Ko	obelski	Modeling Active Region Transient Brightenings observed with XRT to Constrain the Heating Function of Active Regions
S4- P- 12	Y. Ba	umba	Comparison between Hinode/SOT and SDO/HMI, AIA data for the study of solar flare trigger processes
S4- P- 13	S. Im	nada	Coronal Behaviors before the Large Flare Onset
S4- P- 14	N. Sal	ko	An energetics study of X-ray jets
S4- P- 15	A. Sa	vcheva	A New Catalog of Sigmoidal Active Regions: Statistical Properties and Evolutionary Histories
S4- P- 16	P. He	einzel	Prominence visibility in soft X-rays using Hinode XRT observations
S4- P- 17	HS. Yu	1	Are Jets CMEs? The Jet Response Mass Loading of Solar Wind Plasma
S4- P- 18	G.A. Do	oschek	Solar Flare Observations with EIS
S4- P- 19	M. Ka	asuga	Calibration on EIS Instrumental Width from Observations and Its Application

S4- P- 20	Y.	Matsui	Simultaneous observation of high temperature cusp loops and bi- directional inflow in the limb flare with Hinode/EIS and SDO/AIA
S4- P- 21	Τ.	Watanabe	Hot Reconnection Outflows Associated to an X-class Flare
S4- P- 22	Y.	Li	<i>The EUV Late Phase of Solar Flares: Additional Heating or Cooling Signature?</i>
S4- P- 23	V. K.	Verma	On M2.2 Solar Flare and CMEs Observed on 26 November, 2000 from NOAA AR 9236
S4- P- 24	V. K.	VERMA	On Classification of Solar Coronal Mass Ejections Observed by LASCO/SOHO during period 1996-2011
S4- P- 25	R. A.	Maurya	SDO/AIA Observations of a Spotless Two-ribbon Flare and associated Sympathetic Flare
S4- P- 26	J.	Dudik	Slipping flare loops observed by SDO/AIA and the slipping magnetic reconnection
S4- P- 27	M .V.	Gutierrez	A 3-Dimensional View of the Filament Eruption and Coronal Mass Ejection Associated with the 2011 March 8 Solar Flare
S4- P- 28	N. V.	Nitta	Magnetic reconnection rate in eruptive and non-eruptive events as calculated with flare ribbons
S4- P- 29	А.	Reva	CME Observations with TESIS EUV Telescopes and LASCO C2 Coronograph
S4- P- 30	X.	Wang	The maximum energy particles accelerated by the CME-driven shock
S4- P- 31	I. G.	Hannah	The energetics of microflares observed with Hinode, RHESSI and SDO
S4- P- 32	I. G.	Hannah	EM maps of hot ribbons during the rise phase of a flare
S4- P- 33	F.	Rubio da Costa	Combining simulations of radiative hydrodynamics and particle acceleration to model solar flares
S4- P- 34	K.	Watanabe	<i>White-Light Emission and related Particle Acceleration Phenomena in an X1.8-class Flare on 2012 October 23</i>
S4- P- 35	G. S.	Kerr	Properties of the optical sources in the 15th February 2011 solar flare
S4- P- 36	Y.	Shen	Sequential Filament Oscillations Caused by An Invisible Moreton Wave
S4- P- 37	M.	Yamaguchi	Statistical Study of Filament Eruptions and Moreton Waves Observed by the Flare Monitoring Telescope at Hida Observatory, Kyoto University
S4- P- 38	S.	Masuda	Microwave and X-ray observations of an X-class flare on 13 May 2013
S4- P- 39	Τ.	Kawate	The origin of nonthermal electrons in solar flares
S4- P- 40	J.	Не	Three kinds of MHD waves excited around flare due to impact of reconnection-induced plasmoids into ambient plasma
S4- P- 41	E. G.	Kupriyanova	Long-period oscillations of solar flare emissions
S4- P- 42	F.	Farnik	The Spectrometer Telescope for Imaging X-rays (STIX) onboard Solar Orbiter
S4- P- 43	Τ.	Takahashi	Investigation of shock nature of an EUV wave using a prominence activation

Session 5. Space Weather and Space Climate

ID		Presenter	Title
S5- P- 02	S.	Kameda	Mercury observed by Hinode SOT
S5- P- 03	D.	Baker	FIP bias in a sigmoidal active region-coronal hole complex
S5- P- 04	D.	Baker	What can we deduce from the 3D geometry of AR upflows?

S5- P- 05	D.	Baker	Active Region Upflow Plasma: How can it escape from below a closed helmet streamer?
S5- P- 06	Y.	Hada	Diagnosing flare productive active regions using EUV images for space
S5- P- 07	S.	Imajo	Dayside ionospheric equivalent current system of Pi 2 pulsations

Session 6. Solar-Stellar Connection			
ID		Presenter	Title
S6- P- 01	Р.	Testa	The thermal structure of the quiet Sun coronal emission
S6- P- 02	M.	Kanao	SOT BFI plate scale re-calibration on June 2012 Venus transit event
S6- P- 03	M.	Wedemeyer	From high-resolution observations and models of the Sun towards cool stars
S6- P- 04	S. H.	Saar	Flare Rates for Solar-like Stars in the One Gigayear Year Old Kepler Cluster NGC 6811, With Implications for the Sun
S6- P- 05	S. H.	Saar	More Evidence HD 3651 May be in a Maunder-like Magnetic Minimum
S6- P- 06	S. H.	Saar	Differential Rotation at One Gigayear: Rotational Period Changes in Kepler Cluster NGC 6811
S6- P- 07	Τ.	Shibayama	Superflares on Solar Type Stars Observed with Kepler
S6- P- 08	Y.	Notsu	High Dispersion Spectroscopy of Solar-Type Stars showing Superflares
S6- P- 09	S.	Notsu	High-Dispersion Spectroscopy of the Superflare Star KIC6934317
S6- P- 10	A. D.	Kawamura	3D test particle simulation of ISM Oxygen interacting with Heliosphere for IBEX observations

Session 7. Future Problems and Observations

ID		Presenter	Title
S7- P- 01	A.	Sainz Dalda	Refining SOT/SP Measurements of Photospheric Magnetic Field By A Two-Step Deconvolution-Inversion Method
S7- P- 02	S.	Gunar	Synthetic high-resolution prominence observations
S7- P- 03	K.	Yoshimura	Useful methods for coalignment calibration; from the experiences of XRT calibration
S7- P- 04	S. H.	Saar	Empirical Corrections for the Small Light Leak in Hinode XRT
S7- P- 05	N. E.	Hurlburt	IRIS data products and distribution
S7- P- 06	Y.	Kato	Detecting chromospheric magneto-acoustic body wave near the MBPs by using Mg II h&k lines
S7- P- 07	М.	Goto	Analytical solution of the Hanle effect in view of CLASP and future polarimetric solar studies
S7- P- 08	N.	Narukage	<i>UV spectropolarimeter design for precise polarization measurement with</i> 0.1% accuracy
S7- P- 09	J.	Stepan	Polarization of the Lyman-alpha line of hydrogen in multi-thread models of quiescent solar prominences
S7- P- 10	C.	Bethge	The Center for Advanced Solar Spectro-Polarimetric Data Analysis (CASSDA)
S7- P- 11	S.	Bogachev	The Solar EUV telescopes for the Arka mission

S7- P- 12	L.	Teriaca	LEMUR/EUVST: the spectrograph for the Solar C mission
S7- P- 13	D.	Nandi	Solar Hyper-spectral Imaging Polarimeter (SHIP): A Novel Instrument Concept for Near-simultaneous Polarimetric Imaging of the Solar Corona
S7- P- 14	J.	Trujillo Bueno	<i>Our Gateway to the Magnetism of the Chromosphere-Corona Transition</i> <i>Region</i>
S7- P- 15	K.	Ichimoto	Attempts for high spatial resolution at Hida observatory and future coordination with Hinode
S7- P- 16	Τ.	Anan	Magnetic field and electric field of a surge with a spectropolarimetric observation in HI Paschen lines
S7- P- 17	M.	Hagino	<i>Development of a universal tunable filter for future space and ground observations</i>
S7- P- 18	A.	Oi	The magnetic and velocity field structure of the sunspot chromosphere
S7- P- 19	S.	Abe	An Investigation of coronal mass ejections and EUV waves for space weather forecasting
S7- P- 20	K.	Suto	Study of automatic observation system for compact solar telescope
S7- P- 21	K.	Yaji	<i>Coordinated observations for High School Students as Hinode EPO</i> <i>Activity</i>
S7- P- 22	N.	Mouri	Development of the Mobile Spectrograph for Educational Observation