Dynamics and Patterns in Sheared Granular Fluid : Order Parameter Description and Bifurcation Scenario

NDAMS Workshop @ YITP 1st November 2011

Meheboob Alam and Priyanka Shukla

Engineering Mechanics Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India

Outline of Talk

- Shear-banding phenomena
- Gradient Banding and Patterns in 2D-gPCF
- Vorticity Banding in 3D-gPCF
- Theory for Mode Interactions
- Spatially Modulated Patterns (CGLE)
- Summary
- Possible Connection: Saturn's Ring

Gradient Banding in 2D-gPCF

Order-parameter description of shear-banding?

Shukla & Alam (2009, 2011) Saitoh & Hayakawa (2011)

V

Granular Hydrodynamic Equations

(Savage, Jenkins, Goldhirsch, ...)

Balance Equations

Mass

$$\frac{D\rho}{Dt} = -\rho\nabla . u$$

D_o

Momentum
$$\rho \frac{Du}{Dt} = -\nabla . \Sigma$$

Pseudo Thermal Energy

$$\frac{\dim}{2}\rho \frac{DT}{Dt} = -\nabla \cdot q - \sum : \nabla u - D$$

- $\boldsymbol{\varphi}:$ Volume fraction of particles
- *T* : Granular temperature
- *u* : Streamwise velocity
- v: Normal velocity

$$\rho = \rho_p \phi$$

Navier-Stokes Order Constitutive Model

tress
$$\sum = (p - \zeta (\nabla . u))I - 2\mu S$$
$$S = \frac{1}{2} (\nabla u + \nabla u^T) - \frac{1}{\dim} (\nabla . u)I$$

Flux of pseudo-thermal energy

$$q = -\kappa \nabla T$$

S

dim: Dimension of system κ: Thermal Conductivity μ: Shear Viscosity D: Sink of granular energy

Base Flow Assumption: Steady, Fully developed.
Boundary condition: No Slip, Zero heat flux.

Linear Stability

If the disturbances are infinitesimal 'Nonlinear terms' of the disturbance eqns. can be 'neglected'.

Can 'Linear Stability Analysis' able to predict 'Shearbanding' in Granular Couette flow as observed in Particle Simulations?

Can 'Linear Stability Analysis' able to predict 'Shearbanding' in Granular Couette flow as observed in Particle Simulations?

Not for all flow regime

Linear Theory

Particle Simulation

We must look beyond Linear Stability

Nonlinear Stability Analysis: Center Manifold Reduction

(Carr 1981; Shukla & Alam, PRL 2009)

Dynamics close to critical situation is dominated by finitely many "critical" modes.

Z: complex amplitude of finite amplitude perturbation

$$\begin{aligned} D^{\text{isturbance}}_{t} & Z: \text{ complex amplitude of finite amplitude perturbation} \\ X' &= \phi + \psi^{\text{Non-Critical Mode}}_{t} & \left(\frac{\partial}{\partial t} - L\right)\phi = N_2 + N_3 \\ \phi &= ZX^{[1;1]} + \widetilde{Z}\widetilde{X}^{[1;1]} & \left(\frac{\partial}{\partial t} - L\right)\psi = N_2 + N_3 \\ \left(\frac{\partial}{\partial t} - L\right)\psi = N_2 + N_3 & \left(\frac{\partial}{\partial t} - L\right)\psi = N_2 + N_3 \end{aligned}$$

Taking the inner product of slow mode equation with adjoint eigenfunction of the linear problem and separating the like-power terms in amplitude, we get Landau equation

$$\varphi = ZX^{-1} + ZX$$
Taking the inner product of slow mode equation with adjoint eigenfunction of the linear problem and separating the like-power terms in amplitude, we get Landau equation
$$c^{(0)} = a^{(0)} + ib^{(0)} = \omega$$

$$\left(\frac{\partial}{\partial t} - \omega\right) ZX_{11} = N_2 + N_3 \longrightarrow \frac{dZ}{dt} = c^{(0)}Z + c^{(2)}Z |Z|^2 + c^{(4)}Z |Z|^4 + ..$$
First Landau Coefficient
$$c^{(2)} = a^{(2)} + ib^{(2)}$$
Second Landau Coefficient
$$c^{(4)} = a^{(4)} + ib^{(4)}$$

Cont...

Other perturbation methods can be used:

e.g. Amplitude expansion method and multiple scale analysis

1st Landau Coefficient

Linear Problem $LX^{[1;1]} = c^{(0)} X^{[1;1]}$ Second Harmonic $L_{22}X^{[2;2]} = G_{22}$ Analytically solvable Distortion to mean flow $L_{02}X^{[0;2]} = G_{02}$ Distortion to fundamental $L_{13}X^{[1;3]} = c^{(2)}X^{[1;1]} + G_{13}$ Analytical expression of first Landau coefficient $c^{(2)} = \frac{\phi^{a} G_{13}^{1} + u^{a} G_{13}^{2} + v^{a} G_{13}^{3} + T^{a} G_{13}^{4}}{\phi^{a} \phi^{[1;1]} + u^{a} u^{[1;1]} + v^{a} v^{[1;1]} + T^{a} T^{[1;1]}}$ **Analytical solution exists.** • We have also developed a <u>spectral based numerical code</u> to calculate Landau coefficients.

Numerical Method: comparison with analytical solution

Shukla & Alam JFM (2011a)

Spectral collocation method, SVD for inhomogeneous eqns. & Gauss-Chebyshev quadrature for integrals.

This validates spectral-based numerical code.

Equilibrium Amplitude and Bifurcation

Phase Diagram

gradient banding in 2D-GPCF (PRL 2009)

H

 $H_{c} = \infty$

Conclusions

>Problem is analytically solvable.

Order-parameter equation i.e. Landau equation describes shear-banding transition in a sheared granular fluid.

≻Landau coefficients suggest that there is a "sub-critical" (bifurcation from infinity) finite amplitude instability for "dilute" flows even though the dilute flow is stable according to linear theory.

≻This result agrees with previous MD-simulation of gPCF.

≻gPCF serves as a **paradigm** of pitchfork bifurcations.

≻Analytical solutions have been obtained.

≻An spectral based numerical code has been validated.

References: Shukla & Alam (2011a), J. Fluid Mech., vol **666**, 204-253 Shukla & Alam (2009) Phys. Rev. Lett., vol **103**, 068001.

``Gradient-banding" and Saturn's Ring?

≻Self gravity, corriolis and tidal forces?...

References: Schmitt & Tscharnuter (1995, 1999) Icarus Salo, Schmidt & Spahn (2001) Icarus, Schmidt & Salo (2003) Phys. Rev. Lett.

Wednesday 2 November 11

Patterns in 2D-gPCF

Flow is unstable due to stationary and traveling waves, leading to particle clustering along the flow and gradient directions (*Alam 2006*)

Particle Simulations of Granular PCF

(Conway and Glasser 2006)

Amplitude Expansion Method

(Stuart, Watson 1960, Reynolds and Potter 1967, Shukla & Alam, JFM 2011a)

$$X^{i} = \sum_{k=1}^{N} X^{(k)}(y, t) e^{ik(k_{x}x + \hat{u} \cdot y)} + c.c.$$

$$X^{(k)}(y, t) = A^{(n)} X^{[k;n]}(y)$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} = a^{(0)} + Aa^{(1)} + A^{2}a^{(2)} + L$$

$$A^{-1} \frac{dA}{dt} \frac{dA}{dt}$$

Equivalent to "center manifold reduction"

Linear Theory

$\phi = 0.2, H = 100, e = 0.8$

Long-Wave Instabilities $k_x \approx 0$ Supercritical pitchfork/Hopf bifurcation $\phi = 0.2, H = 100, e = 0.8$ x 10⁻⁵ x 10⁻⁴ 9.2 (c) (b) 1.6 -0. $b^{(2)}$ a(0) -0 1.2 $k_x = 2.1 \times 10^{-5 \times 10^{-5}}$ Real and Imag. Part 8.8 of first LC -2 Amplitude 0.8 $a^{(2)}$ 8.6 (a) **Growth Rate** -40.4 2 2 x 10⁻⁵ k, x 10⁻⁵ x 10 Non-linear Linear (a).5 (b (((-----))) line V $k_x = 10^{-5}$ ٧ SW Density -0.50.2 0.8 0.2 0.4 0.6 0.8 0.4 0.6 x/2λ x/2λ Patterns Linear Non-linear (b^{Q.'} (a V $k_x = 4 \times 10^{-5}$ **TW Density** -0.5 -0.5₀ 0.2 0.4_{x/2λ} 0.6 0.8 0.4 Patterns 0.2 0.6 0.8 x/2λ

Stationary Instability

 $\phi = 0.2, H = 100, e = 0.8$

Wednesday 2 November 11

Travelling Instabilities

Supercritical Hopf bifurcation

Nonlinear patterns are slightly affected by nonlinear corrections

Dominant Stationary Instabilities

Wednesday 2 November 11

Dominant Traveling Instabilities

$$X^{[2;2]} = L_{22}^{-1}E_{22} = [2c^{(0)}I - L_2]^{-1}E_{22} = finite$$

$$2c^{(0)}(k_x) = c^{(0)}(2k_x)$$

Evidence for Resonance Multiple resonance in subcritical region

Single mode analysis is not valid at the resonance point

Coupled Landau Equations

$$\frac{dZ_1}{dt} = c_1 Z_1 + \lambda_{11} Z_1 |Z_1|^2 + \lambda_{12} Z_1 Z_2^2 + \lambda_{13} Z_1 Z_2$$
$$\frac{dZ_2}{dt} = c_2 Z_2 + \lambda_{21} Z_2 |Z_1|^2 + \lambda_{22} Z_2^3 + \lambda_{23} |Z_1|^2 + \lambda_{24} Z_2^2$$

Conclusions

- The origin of nonlinear states at long-wave lengths is tied to the corresponding subcritical / supercritical nonlinear gradient-banding solutions (discussed in 1st Part of talk).
- ➢ For the dominant stationary instability nonlinear solutions appear via supercritical bifurcation.
- Structure of patterns of supercritical stationary solutions look similar at any value of density and Couette gap.
- For the dominant traveling instability, there are supercritical and subcritical Hopf bifurcations at small and large densities.
 Uncovered mean flow resonance at quadratic order.

 References:
 Shukla & Alam (2011b), J. Fluid Mech., vol. 672, p. 147-195.

 Shukla & Alam (2011a), J. Fluid Mech., vol 666, p. 204-253.

 Shukla & Alam (2009) Phys. Rev. Lett., vol 103, 068001.

Vorticity Banding in 3D-gPCF

Pure Spanwise gPCF

$$\frac{\partial}{\partial x} = 0, \ \frac{\partial}{\partial y} = 0, \ \frac{\partial}{\partial z} \neq 0$$

Shukla & Alam (2011c) (Submitted)

Linear Vorticity Banding

Nonlinear Stability

Shukla & Alam (2011) (Submitted)

Linear Problem
$$LX^{[1;1]} = c^{(0)}X^{[1;1]}$$

Second Harmonic $L_{22}X^{[2;2]} = G_{22}$
Distortion to mean flow $L_{02}X^{[0;2]} = G_{02}$
Distortion to fundamental
 $L_{13}X^{[1;3]} = c^{(2)}X^{[1;1]} + G_{13}$
Analytical expression for first Landau coefficient
 $c^{(2)} = \frac{\phi^a G_{13}^1 + w^a G_{13}^4 + T^a G_{13}^5}{\phi^a \phi^{[1;1]} + w^a w^{[1;1]} + T^a T^{[1;1]}}$
Adjoint Eigenfunction
 (ϕ^a, w^a, T^a)

Analytical solution exists at any order in amplitude.

Nonlinear Vorticity Banding

Vorticity Banding in Dilute 3D Granular Flow (Conway and Glasser. Phys. Fluids, 2004)

Theory for Mode Interaction (via Coupled Landau Equations)

In dilute-regime both gradient and vorticity banding modes exist

Coupled Landau Equations for resonating modes

Case 2 Single mode analysis fails 0.1 30 (a) $h^{(2)}$ 20 a^[2] 10 a⁽²⁾ -0.1 -10-0.2L 0.26 2 3 0.3 0.34 0.38 k Condition for 1:n resonance. **Jrowth** rate Wavenumber $\frac{k_1}{k_2} = \frac{1}{n} \quad \frac{c_1}{c_2} = \frac{1}{n}$ k_1 k_2

Theory for Mode Interaction

Two dimensional Center Manifold

$$\begin{aligned} & (\frac{\partial}{\partial t} - L) X'(x, y, t) = \sum_{i=2}^{\infty} N_i \\ & (\frac{\partial}{\partial t} - L) X'(x, y, t) = \sum_{i=2}^{\infty} N_i \\ & X' = \phi + \psi \\ & \text{Amplitude of } 2^{\text{nd}} \\ & \text{mode} \end{aligned}$$

$$\phi = A_1(t)E_1X^{[1;1]} + A_2(t)E_2Y^{[1;1]} + c.c. \\ & \text{Amplitude of } 1 \text{ st mode} \\ & (L_{10}X^{[1;1]} = c_1X^{[1;1]}) \\ & (L_{10}X^{[1;1]} = c_1X^{[1;1]}) \\ & X' = \sum_{k=-\infty}^{\infty} (X^{(k)}E_1^k + Y^{(k)}E_2^k) + \sum_{i,j\geq 0, l=j\neq 0}^{\infty} Z^{(ij)}E_1^iE_2^j + c.c. \\ & (A_{11} = \langle \tilde{X}^{\dagger}, G_{13}^{11} \rangle / \langle \tilde{X}^{\dagger}, X^{[1;1]} \rangle, \\ & \lambda_{21} = \langle \tilde{Y}^{\dagger}, G_{13}^{21} \rangle / \langle \tilde{X}^{\dagger}, X^{[1;1]} \rangle, \\ & \lambda_{21} = \langle \tilde{Y}^{\dagger}, G_{13}^{21} \rangle / \langle \tilde{X}^{\dagger}, X^{[1;1]} \rangle, \\ & \lambda_{21} = \langle \tilde{Y}^{\dagger}, G_{13}^{21} \rangle / \langle \tilde{X}^{\dagger}, X^{[1;1]} \rangle, \\ & \lambda_{22} = \langle \tilde{Y}^{\dagger}, G_{13}^{22} \rangle / \langle \tilde{X}^{\dagger}, X^{[1;1]} \rangle, \\ & (\frac{d}{dt} - c_1) A_1 X^{[1;1]} = G_{13}^{11}A_1 |A_1|^2 + G_{13}^{12}A_1 |A_2|^2 + L \\ & (\frac{dA_1}{dt} = c_1A_1 + \lambda_{11}A_1 |A_1|^2 + \lambda_{12}A_1 |A_2|^2) \\ & (\frac{dA_2}{dt} = c_2A_2 + \lambda_{21}A_2 |A_1|^2 + \lambda_{22}A_2 |A_2|^2) \end{aligned}$$

Mode Interaction and Coupled Landau Eqn.

Coupled Landau Equation Non-resonating modes

$$\frac{k_{x_1}}{k_{x_2}} = \frac{1}{2}, \quad \frac{c_1}{c_2} = \frac{1}{2}$$

Coupled Landau Equation "mean flow" resonance

Numerical results awaited

$$\frac{dA_1}{dt} = c_1 A_1 + \lambda_{11} A_1 |A_1|^2 + \lambda_{12} A_1 |A_2|^2$$

$$\frac{dA_2}{dt} = c_2 A_2 + \lambda_{21} A_2 |A_1|^2 + \lambda_{22} A_2 |A_2|^2$$

$$\begin{aligned} \frac{dA_1}{dt} &= c_1A_1 + \lambda_{11}A_1|A_1|^2 + \lambda_{12}A_1|A_2|^2 + \lambda_{13}\tilde{A}_1A_2 \\ \frac{dA_2}{dt} &= c_2A_2 + \lambda_{21}A_2|A_1|^2 + \lambda_{22}A_2|A_2|^2 + \lambda_{23}A_1^2 \end{aligned}$$

$$\begin{aligned} \frac{dA_1}{dt} &= c_1A_1 + \lambda_{11}A_1|A_1|^2 + \lambda_{12}A_1A_2^2 + \lambda_{13}A_1A_2 \\ \frac{dA_2}{dt} &= c_2A_2 + \lambda_{21}A_2|A_1|^2 + \lambda_{22}A_2^3 + \lambda_{23}|A_1|^2 + \lambda_{24}A_2^2 \end{aligned}$$

Shukla & Alam (2011) (Preprint)

Conclusions

➤Coupled Landau equations have been derived for both cases: resonating mode interaction and non-resonating mode interaction.

Analytical solutions for the coefficients of coupled Landau equations have been derived for the gradientbanding problem (first problem of the talk).

>Detailed numerical results awaited.

Shukla and Alam (preprint 2011)

Theory for Spatially Modulated Patterns

Complex Ginzburg Landau Equation (CGLE)

Landau Equation

 $\frac{dA}{dt} = c^{(0)}A + c^{(2)}A |A|^2$

Ordinary differential equation

Holds for **spatially periodic** patterns

Complex Ginzburg Landau Equation

$$\frac{\partial A}{\partial t} = \varepsilon^2 A + a_2 \frac{\partial^2 A}{\partial X^2} + c^{(2)} A |A|^2$$

Partial differential equation

Holds for spatially modulated patterns

Under which condition CGLE arises?

For $H < H_c$ all modes are decaying : Homogeneous state is stable, $\overline{H = H_c}$ at $k_x = k_{xc}$ a critical wave number gains neutral stability, $H > H_c$ there is a narrow band of wavenumbers around the critical value where the growth rate is slightly positive.

width of the unstable wavenumbers:

$$\propto (H-H_c)^{1/2}$$

Theory (Multiple scale analysis)

$$\left(\frac{\partial}{\partial t} - L\frac{1}{j}X'(x, y, t) = \sum_{i=2}^{\infty} N_i\right)$$

2

Growth rate is of order $H - H_c$ Stewartson & Stuart (1971)

The timescale at which nonlinear interaction affects the evolution of fundamental mode is of order 1/(growth rate)

Patterns in Vibrated Bed

Patterns in Vibrated bed can be predicted by the complex Ginzburg LE (Tsimring and Aranson 1997, Blair et. al. 2000)

$$\frac{\partial \psi}{\partial t} = \gamma \psi^* - (1 - i\omega)\psi + (1 + ib)\nabla^2 \psi - |\psi|^2 \psi - \rho \psi$$

Recent work of Saitoh and Hayakawa (Granular Matter 2011) on CGLE in ``*unbounded*'' shear flow.

Conclusions

➤Complex Ginzburg Landau equation has been derived that describes spatio-temporal patterns in a ``*bounded* '' sheared granular fluid.

➤ Numerical results awaited...

Summary

Landau-type order parameter theory for the gradient banding in gPCF has been developed using center manifold reduction.
 Ref: PRL, vol. 103, 068001, (2009)

Analytical solution for the shearbanding instability, comparison with numerics & bifurcation scenario have been unveiled.
 Ref: JFM, vol. 666, 204-253, (2011a)

The order parameter theory for 2D-gPCF has been developed. Nonlinear patterns and bifurcations have been studied.
Ref: JFM, vol. 672, 147-195 (2011b)

Nonlinear analysis for the gradient and vorticity banding in 3D-GPCF has been carried out.
Submitted (2011c)

➢Coupled Landau equations for resonating and non-resonating cases have been derived.
Preprint

➢Complex Ginzburg Landau equation has been derived for bounded shear flow.
Preprint

Revisit nonlinear theory of Saturn's Ring

➢Non-isothermal model with spin, stress anisotropy...

- Self-gravity, Corriolis and Tidal forces ...??
- Spatially modulated waves (Joe's talk)...
- Wave interactions (Jurgen's comment)...
- Secondary instability,

THANK YOU