ASTROPHYSICAL JETS

II

Mitch Begelman JILA, U Horsity of Colorado

Jets are common...

- Protostellar accretion disks
- Pulsars
- Gamma-ray bursts
 - Merging neutron stars
 - Black hole forming inside collapsing star
- X-ray binaries
 - BHs or NSs accreting from disks
- Active Galactic Nuclei
 - Accreting supermassive BHs

Similar morphologies...

...but

Jets from a protostar Few light-years across Speed few 100 km/s Visible light Atomic line emission

Jets from a quasar ~ Million light-years across Speed ~ c Radio wavelengths Synchrotron emission

LARGE-SCALE INTERACTION

backflow

undisturbed intergalactic gas

> "cocoon" (shocked jet gas)

> > splash point

bow shock

Ingredients for forming jets

Rotation

axis determines direction

Accretion disk

often, but cf. pulsars

Magnetic field

likely but unproven

Jet speeds

- Subrelativistic: protostars, v/c ~10⁻³
- Mildly relativistic: SS433 XRB (v/c = 0.26)
 Doppler-shifted emission lines
- Highly relativistic: X-ray binaries, ~10% of AGN (Γ~2-30)
 - Doppler beaming (one-sidedness)
 - Illusion of superluminal motion
 - Gamma-ray flares (to avoid γγ-pair production)
- Hyper-relativistic: gamma-ray bursts (Γ~300)
 - Gamma-ray variability
- Ultra-relativistic: pulsar jets (Γ~10⁶)
 - Modeling of radiation and pulsar nebulae

Jet Acceleration Mechanisms

Hydrodynamic: "Twin-Exhaust" (Blandford & Rees 74)

Pros:

 Simple: adiabatic expansion through nozzle

Cons:

- Needs large external pressure
- Radiative losses
- Radiation drag

Jet Acceleration Mechanisms

Radiative: "Compton Rocket" (O'Dell 81)

Pros:

- Fast acceleration
- Collimation by radiation

Cons:

- Radiative losses
- Aberration limited

Jet Acceleration Mechanisms

MHD: "Magneto-Centrifugal" (Blandford & Payne 82)

Pros:

- Self-collimation
- Immune to radiation

Cons:

- Unstable
- Field not ordered?

What propels jets?

- Gas Pressure?
- Catastrophic cooling (but maybe OK for heated baryons)
- Particle production
- Radiation Pressure?
 - Insufficient luminosities
 - Aberration limits max. Γ*

(*Unless highly opaque: e.g., GRBs)

Electromagnetic Stresses?

- Best bet by elimination, MHD limit
- Polarized synchrotron radiation shows presence of organized B-field
- Magnetic tension/pinch good for extracting rotational energy, collimating jet

Some (rough) numbers

Protostar $M_* \sim 1 M_*$ $R \sim 10^6 \text{ km}$ $B \sim 10^3 \text{ G}$ $R_{\text{cyc,p}} \sim 0.1 \text{ m}$ $\Omega_{\text{rot}} \sim 10^{-3} \text{ rad s}^{-1}$ $\Phi \sim 10^{14} \text{ V}$

X-ray binary M_{вн}~10 М. R~10 km B~10⁸ G R_{cyc,p}~0.1 mm Ω_{rot} ~10⁴ rad s⁻¹ Φ~10¹⁶ V

Quasar $M_{BH} \sim 10^9 M_{\bullet}$ R~10⁹ km B~10⁴ G R_{cvc.p}~1 m Ω_{rot} ~10⁻⁵ rad s⁻¹ Φ~10²⁰ V

MHD probably OK

MAGNETOHYDRODYNAMICS

- Near-perfect conductivity $\vec{E} = -\frac{\vec{v}}{-} \times \vec{B}$
- Magnetic flux-freezing

$$\frac{\partial \vec{B}}{\partial t} = \nabla \times \left(\vec{v} \times \vec{B} \right)$$

EM force density

Relativistic MHD (vs. non-Rel.)

- Must include inertia of internal energy
- Significant electric field

$$\vec{E} = -\frac{\vec{v}}{c} \times \vec{B}$$

Can't ignore charge density

$$\rho_e = \frac{\nabla \cdot \vec{E}}{4\pi} = -\frac{1}{4\pi} \nabla \cdot \left(\frac{\vec{v}}{c} \times \vec{B}\right)$$

• Partial cancellation of Maxwell stress under some conditions (thought to be attained naturally by jets) $\rho_e \vec{E} + \frac{\vec{j} \times \vec{B}}{-} << \frac{\vec{J} \times \vec{B}}{-$

Near-cancellation of Maxwell stress

• Thought experiment: What is the force density acting through the screen toward the observer?

Pressure forces are unchanged by Lorentz transformations

Launching Jets

- Jet base: disk or rotating star (dense gas)
- Initial propulsion—several options
 - Gas or radiation pressure pushes flow through slow magnetosonic point
 - Expansion of "magnetic tower"
 - Mainly toroidal field from start
 - Acceleration by magnetic buoyancy, interchange instability
 - Magnetocentrifugal acceleration
 - Mainly poloidal field, anchored to disk or spinning star
 - Disk or star (or ergosphere of BH) acts like crank
 - Torque transmitted through poloidal field powers jet
- Jet power supply
 - Disk
 - Tap gravitational energy liberated by recent accretion
 - Spin of black hole (Blandford-Znajek effect)
 - use energy stored over long time (like flywheel)

Jet Energetics

GRAVITY, ROTATIONAL K.E.

Efficient conversion to EM energy

POYNTING FLUX

Magnetic field a medium for transmission, not a source

Easy to get ~equipartition, hard to get full conversion

JET KINETIC ENERGY

2 Inertia of gas overcomes stiffness of field field bent backwards into coils

3 Springlike behavior of coils can give further acceleration (?) + get collimation for free (magnetic pinch effect)

Analysis of magnetocentrifugal accel.

Power extracted from crank

 $\dot{E} \sim \frac{\Phi^2 \Omega^2}{c}$

- = magnetic flux
 = ang. vel. of crank
- Linear acceleration with radius $v \sim \Omega R$
- Non-rel. case: Centrifugal phase ends when torque exceeds tension of field

$$v \sim \Omega R_A \sim v_A \sim -\frac{1}{R}$$

- field bends and becomes mainly toroidal
- this is called the "Alfvén point"
- at this point Poynting flux and K.E. are roughly equal

Magnetocentrifugal Acceleration: Relativistic limit

- Power and acceleration unchanged $\dot{E} \sim \frac{\Phi^2 \Omega^2}{V} \qquad v \sim \Omega R$
- Alfvén radius located near "light cylinder" $R_A \sim c / \Omega$

Terminal Lorentz factor

$$\Gamma_{\infty} \sim \frac{\dot{E}}{\dot{M}c^2} >> 1$$

 At Alfvén point, flow Lorentz factor Γ_A ~ Lorentz factor of a (relativistic) Alfvén wave signal

$$\Gamma(R_A) \sim \Gamma_{\infty}^{1/3} \qquad \frac{K.E.}{P.F.} \sim \Gamma_{\infty}^{-2/3} <<1$$

- At end of centrifugal phase, energy is still mostly electromagnetic

Beyond the Alfvén point...

- Jet loses causal contact with disc/star via torsional Alfvén waves
- Further conversion of magnetic into kinetic energy must be by magnetic spring effect... but this is difficult...
 - ...and it is tightly tied to collimation

Jet collimation

- Self-collimation (by magnetic pinch) a myth!
 - Unconfined fields (and jets) expand
 - Need external confinement
- Sources of confinement:

Pressure of external medium

Inertia of disk (transmitted along jet by Alfvén waves)

Alfvén surface

Collimation vs. Acceleration

BUT IT'S NOT A SIMPLE TRADEOFF, FOR TWO REASONS...

Reason 1: Relativistic acceleration is gradual

- Inside R_A energy "passes through" field lines; outside R_A energy is carried by flow
- But energy has inertia: $(E = Mc^2)$ • in relativistic version of $accel. = \frac{force}{mass}$

both numerator and denominator 😋 energy

content $\Gamma \propto (ext. pressure)^{-1/4}$

To go from $\Gamma \sim 1 \Rightarrow \Gamma = 10$ pressure must drop by factor ~10,000

Reason 2: Magnetic forces are anisotropic

- Reason 1 assumed acceleration by gas pressure
- Magnetic fields also produce tension
- \rightarrow

Nearly perfect cancellation of net EM force (outward pressure vs. inward tension) in jets dominated by magnetic fields

Need to examine internal (transverse) jet structure in detail

To get purely magnetic acceleration:

Depends on how rapidly flux surfaces separate from one another:

- Faster than radial $\mathbf{OK}.\mathbf{E}./\mathbf{P}.\mathbf{F}.\mathbf{O}(B_p R^2)^{-1}$ increases
- Slower than radial
 UK.E./P.F. decreases

Conical flux surfaces: force cancellation

Inner flux surfaces collimate relative to outer flux surfaces: P.F. converted to K.E.

Possible asymptotic arrangements of flux surfaces:

Which asymptote is chosen?

Depends on solution of the momentum equation transverse to the flux surfaces

a.k.a...

GRAD-SHAFRANOV EQUATION

(modified to include relativistic internal energy and velocity field)

Numerical models...

- Motion converts GS equation from elliptic to hyperbolic
- 2 critical points:
 - Alfvén (transverse momentum)
 - magnetic tension waves
 - Fast magnetosonic (longitudinal momentum)
 magnetic pressure waves
 - Only one constraint
- Result: some flux surfaces can convert P.F. ØK.E. but most can't

Dissipation in Jets: can result from

- BOUNDARY CONDITIONS
 - Time-dependence **9** internal shocks
 - Loss of causal contact

 recollimation shocks

INSTABILITIES

- Shear-driven
 - Kelvin-Helmholtz
 jet boundary
- Current-driven

Dissipation in Jets: energetics

Tapping Kinetic Energy

- Internal shocks
- Recollimation shocks
- Shear-driven instabilities

Tapping Poynting Flux

- Magnetic field reversals
- Current-driven instabilities

CAN CATALYZE CONVERSION P.F. **9** K.E.

FORCE-FREE PLASMA COLUMNS - STABLE

Special relativistic MHD simulations – S. O'Neill et al., in prep.

PINCH BALANCED BY GAS PRESSURE - UNSTABLE

Special relativistic MHD simulations – S. O'Neill et al., in prep.

Conclusions

- Jets plausibly accelerated by EM stresses in MHD limit
- Flow dominated by Poynting flux where it crosses Alfvén surface
- Conversion of P.F.OK.E. beyond R_A sensitive to flow geometry
 - Easy to ~equipartition, hard beyond
 - Dissipation can help
- Self-collimation a "myth": external confinement needed beyond Alfvén point
- Relativistic jets accelerate gradually:

 *\COP*_{ext}^{-(1/4-1/2)}

Still to be understood...

- How are jets launched?
 - Disk-launching vs. BH spin
 - How is mass loaded onto jets?
 - Ordinary plasma or pair-rich?
 - What determines ∉_◎?
- How are jets collimated?
 - Structure/origin of external medium?
 - Causal contact of jet interior with surroundings
- Why do jets shine?
 - Dissipative processes inside jets (shocks, reconnection, etc.)
 - Sensitivity to P.F./K.E. ratio (shocks weak if Poyntingdominated)
 - Nonlinear effects of local radiation field (synchrotron self-Compton...)
 - Instabilities
 - Shear-driven (Kelvin-Helmholtz) near jet-ambient interface
 - Current-driven near jet axis

Frontiers...

- Numerical simulations
 - GRMHD now possible
 - Need sufficient dynamic range to study boundary layers, dynamics of current sheets
 - Adaptive mesh codes
 - Modeling microphysics, e.g., reconnection
- Effects of time-dependence, nonaxisymmetry
- Boundary conditions
 - Connections to disks
 - Modeling radiation environments
 - Disc-wind environments