Nonequilibrium Dynamics in Astrophysics and Material Science 2011-11-02a YITP, Kyoto

Multi-scale coherent structures and their role in the Richardson cascade of turbulence

Susumu Goto (Okayama Univ.)

A key issue

Small-scale universality of turbulence statistics

Kolmogorov (1941), Dokl. Akad. Nauk SSSR, **30**. English translation: Proc. R. Soc. Lond. A **434** (1991) 9-13.

The local structure of turbulence in incompressible viscous fluid for verv large Revnolds numbers[†]

Similarity hypothesis:

Small-scale statistics do not depend on the b.c. or the forcing sustaining turbulence.

domain G of the four-dimensional space (x_1, x_2, x_3, t) are random variables in the sense of the theory of probabilities (cf. for this approach to the problem Millionshtchikov (1939)).

Small-scale universality Turbulent wake behind (a pair of) cylinders Image: Comparison of the term of t

Richardson 1922		
WEATHER PREDICTION BY NUMERICAL PROCESS JV LEWIS F. RICHARDSON, B.A., F.R.MET.Soc., F.I.MET.F. MARKET AUTOMATION OF DEMANDER OF DEMANDER HETERES OF POPULO AT DEMANDER OF DEMANDER OF DEMANDER	<page-header><page-header><text><text><text><text></text></text></text></text></page-header></page-header>	
"big whirls which feed and little whirls and so on "Richardson	An ave little whirls on their velocity, s have lesser whirls to viscosity —" energy cascade" a the second of the second the other of the second the second of the second of the second the second of the second of the second the second of the second of the second of the second the second of the second of the second of the second of the terms to the second of the second of the second of the second of the second of the second	

Question

What is the mechanism of the energy cascade in turbulence?

Wave-number space analyses based on numerical simulations have been done to verify the cascade picture:

e.g.

Domaradzki, J. A. & Rogallo, R. S., Phys. Fluids A **2** (1990) 413-426. Yeung, P. K. & Brasseur, J. G., Physics of Fluids A **3** (1991) 884-897. Ohkitani, K. & Kida, S., Physics of Fluids A **4** (1992) 794-802.

Several verses proposed		
Richardson (1922)	Betchov (cited by Tsinober 1991)	
"big whirls have little whirls which feed on their velocity, and little whirls have lesser whirls and so on to viscosity —"	"Big whirls lack smaller whirls to feed on their velocity, they crash and form the finest curls, permitted by viscosity—"	
Hunt (2010)		
"Great whirls gobble smaller whirls and feed on their velocity: but where great whirls grind, they also slow, and little whirls begin to grow — stretching out with high vorticity"		
	unsolved problem	

DNS observations

At a scale in the inertial range:

Coherent vortices have tubular shapes, whose radii are comparable to the scale.

At different scales:

Smaller-scale tubes tend to align in the perpendicular direction to (the anti-parallel pairs of) largerscale tubes.

Biot-Savart law

$$u = \frac{1}{4\pi} \int \frac{d\omega \times r}{r^3}$$
♦ Velocity is determined by the vorticity field.

Summary of the verification of the scenario

- ✓ The scale-dependent energy is confined in the vortex tubes at the corresponding scale.
 - \rightarrow energy cascade is creation of smaller eddies
- \checkmark The energy transfer takes place in the straining regions.

 \rightarrow energy cascade is caused by vortex stretching

Is the cascade local in scale?

$$\frac{D\omega}{Dt} = \omega \cdot \nabla u + \nu \nabla^2 \omega$$
Time scale of the strain at the integral length:

$$\tau_s = L/u'$$
Time scale of the diffusion at scale:

$$\tau_d = \ell_{\min}^2/\nu$$

37

Is the cascade local in scale?

These two time scales balance:

$$\ell_{\min} = L \sqrt{\frac{\nu}{Lu'}}$$

which is so-called the Taylor "micro" scale.

Fine structures as small as the Taylor length can be created directly by the largest-scale eddies...

Conclusions

- Developed turbulence consists of multi-scale coherent vortex tubes.
- The cascade is the creation of thinner vortex tubes in straining fields around fatter ones.
- Scale-dependent energy of fluid particles is defined to verify the scenario.
- ◆The cascade can be very non-local in scale.