Dynamics of Self-Sustained Turbulence in Astrophysics: MRI-Driven Turbulence in Accretion Disks

> Shu-ichiro Inutsuka (Nagoya Univ) Takayoshi Sano (Osaka Univ) Takeru K. Suzuki (Nagoya Univ) special focus on Net B<sub>7</sub> Case

## Early Phase of Protostar Formation



Machida, SI, & Matsumoto (2006-2010)

Outflows & Jets are Natural By-Products!

## Early Phase of Disk Formation



# Formation & Evolution of Discs

Further Evolution of Protostars

Accretion of Gas from the envelope &
 Gas Accretion through the Discs

### Early Phase

Rapid Gas Accretion due to

Gravitational Torque of

"m=2" Spiral Mode

#### Later Phase



Slow Accretion due to Magnetorotational Instability Velikhov 1959, Chandrasekhar 1961, Balbus & Hawley 1991



#### Standard Model of Planet Formation

## Basic Energetics 1

specific angular momentum:

 $h = r v_{\phi}$ 

specific energy:

 $e = v_{\phi}^{2}/2 + \psi = (h/r)^{2}/2 + \psi(r)$ 

total energy:

 $E = m_1 e_1 + m_2 e_2$ 

total angular momemtum:

$$H = m_1 h_1 + m_2 h_2$$



Transfer angular momentum (*dh*) between 1 & 2:

$$dH = m_1 dh_1 + m_2 dh_2 = 0$$
  

$$dE = m_1 (\partial e/\partial h) dh_1 + m_2 (\partial e/\partial h) dh_2$$
  

$$= m_1 dh_1 (\Omega_1 - \Omega_2) < 0 \text{ for } dh_1 < 0$$

*i.e.*, Outward transfer of Angular Momentum may be unstable.

Lynden-Bell & Pringle 1974

## Basic Energetics 2

Next, transfer mass & angular mom.  $dM = dm_1 + dm_2 = 0$   $dH = d(m_1 h_1) + d(m_2 h_2) = 0$   $dE = d(m_1 e_1) + d(m_2 e_2)$   $= dm_1 \{ (e_1 - h_1 \Omega_1) - (e_2 - h_2 \Omega_2) \}$   $+ d(m_1 h_1) (\Omega_1 - \Omega_2)$ where

$$d(e - h\Omega)/dr = d(-v_{\phi}^{2}/2 + \psi)/dr = -rv_{\phi} d\Omega/dr > 0$$

$$\frac{(e_1 - h_1 \Omega_1) - (e_2 - h_2 \Omega_2)}{(e_1 - h_1 \Omega_1) - (e_2 - h_2 \Omega_2)} < 0$$

Thus,

dE < 0 for  $dm_1 > 0$  and  $d(m_1 h_1) < 0$ 

How to transfer of Angular Momentum and Mass?

Basic Eq.  $\frac{\partial \rho}{\partial t} + \nabla \cdot \left( \rho \, \overrightarrow{v} \right) = 0$  $\frac{d\overrightarrow{v}}{dt} + \frac{1}{\rho}\nabla\left(P + \frac{B^2}{8\pi}\right) - \frac{1}{4\pi\rho}\left(\overrightarrow{B}\cdot\nabla\right)\overrightarrow{B} + \nabla\Phi = 0$  $\frac{\partial \overrightarrow{B}}{\partial t} - \nabla \times \left( \overrightarrow{v} \times \overrightarrow{B} \right) = \eta \nabla^2 \overrightarrow{B}$  $ho T \frac{ds}{dt} = \frac{\eta}{4\pi} \left( \nabla \times \overrightarrow{B} \right)^2$  No Cooling!

where,

- d/dt: Lagrangian Derivative
  - $\Phi$ : Gravitational Potential
  - $\eta$ : Magnetic Diffusivity
  - s: Enthoropy per Unit Mass

#### Weak Magnetic Field Lines



Magneto-Rotational Instability (MRI)

Local Linear Analysis with Bousinesq approx.  $\delta \propto e^{i(kz + \omega t)}$ ,  $k = 2\pi/\lambda_z$ 

Dispersion Relation in Ideal MHD ( $\eta$ =0) Case  $\omega^4 - \omega^2 [\kappa^2 + 2(k \cdot v_A)^2] + (k \cdot v_A)^2 [(k \cdot v_A)^2 + R d\Omega^2/dR] = 0$ 

## Simple Explanation for Instability

#### Equivalent Model with a Spring!



## **Basics of MRI**

 $k_r=0$  axisymmetric (m=0) mode Ideal MHD  $R_{\rm m} \equiv v_{\rm A} (v_{\rm A}/\Omega) / \eta$ Linear Growth Rate: Ideal MHD 0.8  $R_{\rm m} = 10$ growth rate  $\omega_{\text{max}} \approx (3/4) \ \Omega_{\text{kepler}}$ 0.6 **Exponential Growth**  $\mathfrak{F}(\omega/\Omega)$ from Small Field 0.4 -> Kinetic Dynamo 0.2larger  $\eta$ 0  $\lambda_{\rm max} \approx 2\pi v_{\rm a} / \Omega_{\rm kepler}$ 0.51.5 $\mathbf{2}$ n  $\Rightarrow$  "Inverse Cascade" wavenumber  $k_z v_{Az} / \Omega$ Sano & Miyama 1999, ApJ 515, 776

## Non-Linear Stage of MRI

- Hawley & Balbus (1991)
- Hawley, Gammie & Balbus (1995, 1996)
- Matsumoto & Tajima (1995)
- Brandenburg et al. (1995)

Balbus & Hawley (1998) Rev. Mod. Phys. 70, 1

### **Global Disk Simulation**



#### **MHD** Simulations including **Ohmic Dissipation**

#### A Keplerian Disk + Uniform Vertical Fields B<sub>0</sub>



### **2D** Axisymmetric Calculation

<u>Magnetic Raynolds Number:  $R_{M} < 1$ </u> "Uniformly Random" Turbulent State  $\Rightarrow \eta$ -Dependent Saturation Level



### **2D** Axisymmetric Calculation

<u>Magnetic Raynolds Number:  $R_{M} > 1$ </u> simple growth of the most unstable mode  $\Rightarrow$  Channel Flow... indefinite growth of B



## 2D Axisymmetric Calculation



## **3D Simulations**

R<sub>m</sub> > 1
Channel Flow
Break-Down
by
Reconnection

Ζ



#### 3D Calculations $Re_{\rm M} > 1$

- Exponential Growth of Most Unstable Mode
- $\Rightarrow$  channel flow
- $\Rightarrow$  dissipation due to reconnection



Sano, SI, Turner, & Stone 2004, ApJ **605**, 321

### **Turbulence Spectrum**



#### Nonlinear Time Evolution

#### When $Re_{\rm M} > 1$ ,

Spicky Feature in Time Evolution of Energy

= Recurrence of Exponential Growth and Magnetic Reconnection





### Fluctuation vs Dissipation

$$\Gamma = \iiint \left[ \rho \left( \frac{1}{2} v^2 + u + \psi \right) + \frac{B^2}{8\pi} \right] dV$$
Hawley et al. 1995
$$\frac{d\Gamma}{dt} = \iint \left[ \rho \vec{v} \left( \frac{1}{2} v^2 + u + \frac{P}{\rho} + \psi \right) + \vec{S} \right] \cdot \vec{dA} = \frac{3}{2} \Omega \quad L_x \iint_{y \in \overline{\mathbb{I}}} \left( \rho v_x \delta v_y - \frac{B_x B_y}{4\pi} \right) dA$$
Poynting Flux
$$\vec{M} \propto W_{R\phi} = \rho v_R \delta v_\phi - \frac{B_R B_\phi}{4\pi} \propto \frac{d\Gamma}{dt} .$$
If saturated,  $\left\langle \left\langle \frac{\partial v^2}{\partial t} \right\rangle \right\rangle = \left\langle \left\langle \frac{\partial B^2}{\partial t} \right\rangle \right\rangle = 0$ , then,  $\left\langle \frac{d\Gamma}{dt} \right\rangle = \left\langle \left\langle \frac{\partial \rho u}{\partial t} \right\rangle \right\rangle = \frac{3\Omega}{2} \left\langle \left\langle \rho v_R \delta v_\phi - \frac{B_R B_\phi}{4\pi} \right\rangle \right\rangle$ ,
where  $\langle \rangle$  denotes time-average, and  $\langle \langle \rangle \rangle$  denotes time- and spatial- average.
Note that  $\langle v_R \rangle = \langle \delta v_\phi \rangle = \langle B_R \rangle = \langle B_\phi \rangle = 0$ .
Sano & SI (2001) ApJ 561, L179
Saturation Value of  $\langle \langle B^2 \rangle \rangle \Rightarrow$  Dissipation Rate  $\approx 0.03\Omega \langle \langle B^2 \rangle \rangle$ 

SI & Sano (2005) ApJL **628**, L155

Evolution of Pressure

Monotonic Increase of Pressure because of no cooling





### **Discussion 1: Saturation Level?**

$$\langle\!\langle \rho \mathbf{v}_{\mathbf{x}} \delta \mathbf{v}_{\mathbf{y}} - B_{\mathbf{x}} B_{\mathbf{y}} / 4\pi \rangle\!\rangle \equiv \langle\!\langle B^2 \rangle\!\rangle_{\text{sat}} (\eta, B_{z,\text{init}}, P, L_z, \dots) \propto \langle\!\langle B_z^2 \rangle\!\rangle$$

#### In the case with Net $B_z$

- Re<sub>m</sub> < 1...Strong Dependence on Resistivity ≈ 2D evolution Sano, SI, & Miyama, ApJ 506, L57, 1998
- Re<sub>m</sub> > 1... recurrence of Channel Flow & Reconnection Sano, SI, Turner & Stone (2004)  $\langle B^2 \rangle_{sat} \approx V_{Az,init} \rho L_z \Omega (P_{gas}/P_c)^{1/6} \dots Why?$

## Discussion 2: Saturation Level?

#### Lesur & Longaretti (2007), $Re_m > 1$ Using Spectral Method for Incompressible Fluid

$$\langle\!\langle B^2 \rangle\!\rangle_{sat} \propto (Pr)^{\delta}, \delta = 0.25 - 0.5$$

where Magnetic Prandtl number is  $\mathrm{Pr} \equiv v_{\mathrm{viscosity}} \,/\, \eta_{\mathrm{resistivity}}$ 

➔ Importance of Turbulent Reconnection?

cf.) Lazarian & Vishniac (1999)

- v, viscosity  $\uparrow$
- ➔ Size of Smallest Eddy ↑
- → Turbulent Reconnection Rate  $\downarrow$
- → Saturation Level ↑

# Spectrum for Motion $\perp B$ field



# Spectrum for Motion // B field



100

## Summary

**Results of 3D Resistive MHD Calculation** When Magnetic Reynolds Number  $(Re_m) > 1$ 

- Exponential Growth from very small B
- Growth Rate =  $(4/3)\Omega$ ... independent on *B* Field Strength cf. Kinematic Dynamo
- $\lambda_{\text{maximum growth}}$  becomes larger as *B* becomes greater.

→ Inverse Cascade of Energy

#### Saturated States...≠ Energy Equipartition

Classified by Re<sub>m</sub>

#### • $Re_m < 1...quasi$ -steady saturation similar to 2D results

#### • Re<sub>m</sub> > 1... recurrence of Channel Flow & Reconnection **Fluctuation-Dissipation Relation**

«Energy Dissipation Rate»  $\propto \langle \rho v_x \delta v_y - B_x B_y / 4\pi \rangle$ 

 $\propto$  Mass Accretion Rate