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Dilute, three-dimensional ring: repeat and 

extend Goldreich and Tremaine’s calculation of 
the relationship between optical depth and 

coefficient of restitution. 
 

Dense, two-dimensional ring: introduce and 
interpret a simple numerical simulation of the 

flow around a moonlet in the absence of 
gravitational interactions between the moonlet 

and the disk particles and between the disk 
particles. 

 
 

 



 
Velocity distribution function: f ( ; , t)d dc x c x 
 
number density: f ( ; ,n( , t)dt)  c c cx x  
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Balance equations 
 
mass:  smn     , 3d n / 6    
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Explicit form 
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Collisions 
 

1 2 and c c  pre-collisional velocities, 1  and  2c c  
post-collisional velocities, unit vector k directed 
from 1 to 2, coefficient of restitution e, relative 

velocity 1 2 g C C , unit vector j in the plane of 
g and k, perpendicular to k. 
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Total change of second moment 
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Collisional production of second moment 
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Second moment 
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Cylindrical polar: r,  ,  z  
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Nearly homogeneous 
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Balance equations at lowest order 
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Eigenvector basis 
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Integrate the last over z:  
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Integrate the isotropic part over z: 
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Using this, the 33 component is 
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With the last two, the difference between the 22  
and 11 components is 
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Solve the last two balance equations for α and β 
in terms of 1 e    
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Lowest order in :   1/2
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Limitations 
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Optical depth  
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Differential Equations 
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where S is the nondimensionalshear rate,

S=
fl(r) d

Cl …3αsin2X,

C2=

C3=

68*(2 - e*)

q3/2
tr(A) ,

5汀l/2(I - 2β)(5 - 4β)

(2 - 6*)Mlヱ

cos2X -
5α

3(1十β)'

. ∨享訪
a　=

2 '
β-1壁
14'

and

with

and
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(58)

(59)

(60)

tr(A,諸(70 + 7α2. 2JIP2 - 2α恒i)I (61,

Upon integrating (54) over the ring thickness, we obtain

S-許

J-).S FO2 df ().D F203 dETl

where

(62)

(63)

With (63), we may employ Eq. (36) to solve for S in terms

ofJ and to write (54) as

㊥〝=　-

2(㊥′)2

β≡

+ BJF(JF㊥ - I),

C弓

C2C3

(64)

(65)

where

FIG. L Dimensionless temperature distn'bution 0 versus nondinen-

sional axI'al dt'stance g for different values of E*. As e'→ 0.3688,

⑳→1.

is positive fわr all values or g串. The introduction or the

integral parameterJ permits us to easi一y impose the condi-

tion that the heat hx vanishes at large i andalSo removes
the quantity S from the equations. This is an advantage

because J remains爪nite for aJI values of S*, While S in･

creases without bound as C* approaches the value at

which sin 2X - 0. In the course of solving for the density

and temperature profiles, J is determined iteratively.
The boundary conditions at the midplane are

㊥(0)- 1, 0'(0)-0, and F(0)- ).　(66)

Equations (53) and (64) have been solved subject to the

boundary conditions (66) using a Runge-Kutta method
●

beglnnlngwith an initial guess for J. Once the profile is

determined, ∫ is reca】culated using (63) and the integra-

tions of (53) and (64) are repeated. This procedure requires

only a few iLerations to converge.

Typicalprofiles for ㊨ and F are shown in Figs. 1 and

2 for different values of 8*･ In all cases, the temperature

increases with distance from themidp]ane, reaching a

constant value as i becomes very Iarge. The largest such

temperature occurs in the mathematical, but not physical,

limit of perfectly elastic couisions･, it I's about 15% larger

than the I.emperature on the midplane. For 88 - 0.3688,

the temperature is constant throughout. From Fig. 2 it

can be seen that the density promes do not vary apprecia-

bly for different e* and are c)ose to the isothermal. pro触:

F*-expL
2(1 - 2P)

(67)
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0　　1　　2　　　3　E　4

FIG. 2. Dimensionlcss density distribution Fversus nondimensionaJ

axia一 distaEtCe f for diffe作n【 values ofe*. The jsothermaJ density pro蝕

con.esponds to s事- 0･3688.

Finally, Fig. 3 shows a detailed energy balance br

S* - 0.I,with production (P), dissipation (D), and con-

duction (C) de負ned by

P-BJFO2, D-BJ2F203, and

C - ㊥20〝 + 20(㊥')2. (68)

it is seen that production as wel] as djssJPatjon ofkjneljc
●

energy is highest at the midplane. The dissipation of en･
ergy near the central plane dominatps the production,

whereas for lar砦e axial distances more energy is generated
I

than can be dissipated; therefore, heat is conducted from

large axialdistantes to the central plane.
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FIG. 3. Energy balance with production (P), dissipatiort (D), and

conduction (C) for e+ - 0.1 versus nondimensional axial distance f.
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Of course, the variations of the volume fraction and

the granular temperature are determined only relative to
their values on the midptane of the rlng. In order to deter-

■

mine their midplane values, additional information is re-

quired. In the next section, we introduce additional infor-

mation and solve for these midplane values and the

particle diameter.

SATURN's A･RING

We now glVe rOughestimates of the granular tempera-
■

ture and the solid volume fraction on the midplane and

the particle diameter in Satum's A-ring･ As a result of

the 6/7Lindblad resonance, there is a torque T6/7 exerted

at the outer edge of the A-ring. We Rrst equate this torque

to th¢ moment of the integrated shear stress,

･6′7 - 4wRi loG pK,p dz･　(69)

whereRA is the outer radius of the A-ring, RA - l･37 ×

log m, we de触e the surface mass density ∑ by

∑ - 2(.Tp dz･　　(70)

anduse the fact that ∑主300 kg m~2 and T6/7/∑主1.13

× loll m4 sec~2 (cuzzi et aZ., 1984).

Then, upon writing K,p ≡ T α sin 2x and using the

variables of the previous section in (69) and (70), we have

that themidpJane temperature and themidpJane volume
fraction are gJVen by

●

To-

and

㌔/7　　1

2打∑R2^ α sin 2X

∑fl

lonFdf ((.eF◎2df)-. (71,

((.I F df)- l･  (72,

RecaJ】ing the dehitjozl (55), the particle diameter is given

in terms of these by

d-
fl　'

(73)

where ∫ is given in tems orJ by (62). When these quanti-

ties are evaluated on the numericalsolutions for F and

0, their values are determined as functions of e*.
It is, perhaps, more convetlient to have these qtlantilies

gJVen aS functions of the optical depth T de丘ned by

●

･-SI.#ydz=言!.xFdf -宅JI.*Fdf･ (74,
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FIG. 4. The quantities ヽ塙(m seclt), vo, a(m), and e* versus T.

Because (74) relates T and S* on solutions, this is easy to

do. The graphs of To, uo, d, and e* versusナare shown

in Fig. 4.

The relationship between S* and T that results is essen-

tially identical Lo the relationships between S* and T deter･

mined by Goldreich and Tremaine (1978) and Araki (1991).

That is, the variation of temperature normal to the plane

of the ring does not have a discemible effect on the rela･
●

tionship between the optical depth and the coefGcient of

restitution. We can take advantage of this lack ofsensitiv･

lty tO the variation of the granular temperature normal to
●

the rI'ng to obtain simple approx.imate forms of (71)-(73)

that are more amenable to physICal interpretation.

tf we take the temperature to be uniformand use the

isothermal density distribution (67) in the integrals (71)

and (.72), the relation Forresponding to (7)) is clearly a

determination of themidplane value of K,P that has been

solved for Tot.

To-
㌔/7　　1

2打∑R2A α Sin 2X●
(75)

The quantity α sin 2x is the kinemalic viscosity introduced

by Goldreich and Tremaine (1978), normalized by 2To/

3fl.Asthey show, this normalized kinematic viscosity
丘rst increases with T and then decreases. The minimum

in the curve of To versus T in Fig･ 4 is a consequence of

this. ln the same limit, (72) becomes a relation between

themidplane value of Kzz and I,o:

∑fl 1
Z/o =

p,∨註vT.(I I 2β)●

(76)

Because β is a monotone increasing function of S*, the

i=1

maximum in the curve of I,o versus T is inherL'ted from the

minimum in the curve of TD Versus T. The particle diameter

then follows from (73) with J = ヽ巧, and the optical depth

is

3q2α sin
丁　=

2X

2㌔(2 - 6*) tr(A)
Vr二両.　(77 )

Upon employing (59)-(61), these叩ay be expressed in

terms of 8* alone.
■

lt is interestlng that the introduction of so modest an

amount of information permits such explicit predictions

to be made of the midplane vo)ume fraction, the midplane

granular temperature, and the particle diameter in the

context of this simple TnOdeJ of the rlng.
■

A C KNOWLEDGMENTS

The authors have beme飢ted from conversations with J. A. Burns.

They are also indebted to C. Zhng for his assistance with the etlergy
nuX, Finally, they are grateful to S. Araki fわr suggestions that led to

the improvement of the manuscnpt. This work was begun when Volker

Sinon was an exchange student at Cornet) University. He is pleased

to thank F. G. Kollmann and W. Jl. Sachse, who initiated this exchange

program and thereby laid the fourldation for the current collaboralion･

He is also appreciative of the hospita)ity shown to him during visits to

the Department o† Theoretical and Applied Mechanics , ComelL U niver-

slly, I'n the summers of 1988 and 1989. These visits were supported by

the U.S. Army Research OfGce throughthe Mathematical Sciences
Institute at CorneH University.

REFERENCES

ARAKl, S., AND S. TREMAJPJE 1986. The dynamics of dense particle

disks. JcartLS 65, 83-I09.

ARAKI, S. 1988. The dynamics of particle disks. Il. Effects of spln

degrees of freedom. IcarLJS 76,王82-I98.

ARAKl, S. 1991. The dynamics of particle disks. Ill. Dense and spinnirLg

particle disks. JcLlr〃S 90, 139-171.

CuZZI, ∫. N., ∫. ∫. LISSAUER,し. W. EsposITO, ∫. a. HoLBERG,巳. A.

MAROUF, G.し. TYLER, AND A. BoISCTIOT 19糾. Saturrlls rings: Prop･

erties and processes. 1n planetary Lh'T7gS (良. J. Greenberg and A･

Brahic, Eds). pp. 73-200.

GoLDREtCH, P., AND S. TREMAlNE 1978. The ve一ocity dispersion in

Saturn's nngs. tcEzrnL･ 34, 227-239.
●

JENKJNS, ∫. T., AND M. W. RICHMAN 1988. Plane simple shearofsmooth

irleJastic circular disks: The anisotropy of the second moment in the

dilute and dense 一imits. J. FtLIfd Mech. 19之, 31ト328.

RlcHMAN, M. W. I989. The source of second moment ill dilute granular

nows of highly ine)astic spheres. ). RFleOl. 33, I293-1306.

SHUHKMAN, G. 19糾. CoHisional dynamics or partic一es in Saturn●s

rings. Astron. Zh. 61. 985-1004: translated in Sotl. Asrrol7. 28,

547-585.

sTEWAふT, G. A.. D. N. C. LI‖, AND P. BoDENHEIME.R, 1984. Collision

irlduced transport processes in planetary rlngS. ln Plo17etLTrT･ Lungs

(R･ J･ Greerlberg and A･ Brahic, Eds.), pp･/447-5I2.

ZHANG, C. 1993. KJ'nQtL'c Theory for RapL'd Graf7LLlar Flows, Ph.D. Dis-

sertation, Corrtell University, Ithaca, NY.

′



Shock Waves around a Moonlet in a Planar Ring 
 

Steady, homogeneous energy balance: 
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Dimensionless ring temperature  *T T / d   versus 

area fraction   
 

 

 

 

 

 

 



Isentropic Sound Speed 
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Mach Number 
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Mach Number M 
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Mach number M u / a , with  2

s
a p /   , 

normalized by dimensionless vertical displacement, 
*y y / d , versus sound speed 

 
 

 

 

   

 

 



Simulations 

 

Two-dimensional flow of identical, frictionless, 
circular disks 

Event-driven simulations of hard-particles 

 

Homogeneous Hill equations 
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Time made dimensionless by Ω, lengths by d 

moonlet diameter D 
 

Parameters: D/d, e, ν 



Particle velocity 

 

D/d = 25, ν = 0.5, e = 0.3 
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D / d 30,  25,  15,  10  with e 0.3   and 0.5   

 

 



e 0.3,  0.5,  0.6,  0.8  with D / d 25  and 0.5   

 

 



0.7,  0.5,  0.3   with  e 0.3  and D / d 25  

 


