Application of Granular Kinetics to Ring Processes

Jim Jenkins
Cornell University
with

Volker Simon, Brian Lawney, and Joe Burns

Dilute, three-dimensional ring: repeat and extend Goldreich and Tremaine's calculation of the relationship between optical depth and coefficient of restitution.

Dense, two-dimensional ring: introduce and interpret a simple numerical simulation of the flow around a moonlet in the absence of gravitational interactions between the moonlet and the disk particles and between the disk particles.

Velocity distribution function: $\mathrm{f}(\mathbf{c} ; \mathbf{x}, \mathrm{t}) \mathrm{d} \mathbf{c d} \mathbf{x}$
number density: $\mathrm{n}(\mathrm{x}, \mathrm{t}) \equiv \iiint_{\mathrm{c}} \mathrm{f}(\mathbf{c} ; \mathbf{x}, \mathrm{t}) \mathrm{d} \mathbf{c}$
Averages: $\langle\psi\rangle \equiv \frac{1}{\mathrm{n}} \iiint_{\mathrm{c}} \psi \mathrm{fdc}$
mean velocity: $\quad \mathbf{u} \equiv\langle\mathbf{c}\rangle=\mathbf{u}(\mathbf{x}, \mathrm{t})$
velocity fluctuation: $\mathbf{C} \equiv \mathbf{c}-\mathbf{u}=\mathbf{C}(\mathbf{x}, \mathrm{t})$
second moment: $\quad \mathbf{K} \equiv\langle\mathbf{C} \otimes \mathbf{C}\rangle$

$$
\mathrm{T} \equiv \operatorname{tr}(\mathbf{K}), \quad \hat{\mathbf{K}} \equiv \mathbf{K}-\frac{1}{3} \mathrm{~T} \mathbf{1}
$$

third moment: $\quad \mathbf{Q} \equiv\langle\mathbf{C} \otimes \mathbf{C} \otimes \mathbf{C}\rangle$

$$
\mathrm{Q}_{\mathrm{ijk}}=\frac{1}{5}\left(\mathrm{Q}_{\mathrm{ipp}} \delta_{\mathrm{jk}}+\mathrm{Q}_{\mathrm{jpp}} \delta_{\mathrm{ki}}+\mathrm{Q}_{\mathrm{kpp}} \delta_{\mathrm{ij}}\right), \quad \mathrm{q}_{\mathrm{i}} \equiv \frac{1}{2} \rho \mathrm{Q}_{\mathrm{ipp}}
$$

Balance equations

mass: $\rho \equiv \mathrm{mn}=\rho_{\mathrm{s}} \nu, \nu=\pi \mathrm{d}^{3} \mathrm{n} / 6$
$\frac{\partial \rho}{\partial \mathrm{t}}+\nabla \cdot(\rho \mathbf{u})=0$
linear momentum
$\rho \frac{\partial \mathbf{u}}{\partial \mathrm{t}}+\rho(\mathbf{u} \cdot \nabla) \mathbf{u}=-\nabla \cdot(\rho \mathbf{K})-\rho \mathrm{GM} \frac{\mathbf{R}}{|\mathbf{R}|^{3}}$
second moment

$$
\begin{array}{r}
\rho \frac{\partial \mathbf{K}}{\partial \mathrm{t}}+\rho(\mathbf{u} \cdot \nabla) \mathbf{K}+\rho(\mathbf{K} \cdot \nabla) \mathbf{u}+\rho[(\mathbf{K} \cdot \nabla) \mathbf{u}]^{\mathrm{T}} \\
+\nabla \cdot(\rho \mathbf{Q})=\Gamma[\mathbf{C} \otimes \mathbf{C}]
\end{array}
$$

Explicit form
$\mathrm{f}(\mathrm{c} ; \mathbf{x}, \mathrm{t})=\frac{\mathrm{n}}{(8 \pi \mathrm{~K})^{1 / 2}} \exp \left(-\frac{1}{2} \mathbf{C} \cdot \mathbf{K}^{-1} \mathbf{C}\right), \mathrm{K} \equiv \operatorname{det}(\mathbf{K})$

Collisions

\mathbf{c}_{1} and \mathbf{c}_{2} pre-collisional velocities, \mathbf{c}_{1}^{\prime} and \mathbf{c}_{2}^{\prime} post-collisional velocities, unit vector \mathbf{k} directed from 1 to 2, coefficient of restitution e, relative velocity $\mathbf{g} \equiv \mathbf{C}_{1}-\mathbf{C}_{2}$, unit vector \mathbf{j} in the plane of \mathbf{g} and \mathbf{k}, perpendicular to \mathbf{k}.

$$
\begin{gathered}
\mathbf{g}^{\prime} \cdot \mathbf{k}=-\mathrm{e}(\mathbf{g} \cdot \mathbf{k}) \\
\mathbf{c}_{1}^{\prime}=\mathbf{c}_{1}-\frac{1+\mathrm{e}}{2}(\mathbf{g} \cdot \mathbf{k}) \mathbf{k} \quad \mathbf{c}_{2}^{\prime}=\mathbf{c}_{2}+\frac{1+\mathrm{e}}{2}(\mathbf{g} \cdot \mathbf{k}) \mathbf{k}
\end{gathered}
$$

Total change of second moment

$$
\begin{aligned}
\Delta & \equiv \mathbf{C}_{1}^{\prime} \otimes \mathbf{C}_{1}^{\prime}+\mathbf{C}_{2}^{\prime} \otimes \mathbf{C}_{2}^{\prime}-\mathbf{C}_{1} \otimes \mathbf{C}_{1}-\mathbf{C}_{2} \otimes \mathbf{C}_{2} \\
& =-\frac{1}{2}(1+\mathrm{e})(\mathbf{g} \cdot \mathbf{k}) \\
& \times[(1-\mathrm{e})(\mathbf{g} \cdot \mathbf{k}) \mathbf{k} \otimes \mathbf{k}+(\mathbf{g} \cdot \mathbf{j})(\mathbf{k} \otimes \mathbf{j}+\mathbf{j} \otimes \mathbf{k})]
\end{aligned}
$$

Collisional production of second moment

$$
\begin{aligned}
\Gamma[\mathbf{C} \otimes \mathbf{C}] & =\frac{1}{2} \mathrm{~m} \iiint_{\mathrm{g} \cdot \mathbf{k} \geq 0} \Delta \mathrm{f}_{1} \mathrm{f}_{2} \mathrm{~d}(\mathbf{g} \cdot \mathbf{k}) \mathrm{d} \mathbf{k d} \mathbf{c}_{1} \mathrm{~d} \mathbf{c}_{2} \\
& =-\frac{6}{\pi^{3 / 2}}(1+\mathrm{e}) \frac{\rho v \mathrm{~T}^{3 / 2}}{\mathrm{~d}} \gamma
\end{aligned}
$$

$$
\gamma=(1-\mathrm{e}) \mathbf{A}+2 \hat{\mathbf{B}}
$$

$$
\mathbf{A} \equiv \iiint_{g \cdot k \geq 0} \mathbf{k} \otimes \mathbf{k}(\mathbf{k} \cdot \mathbf{K} \mathbf{k} / \mathrm{T})^{3 / 2} \mathrm{~d} \mathbf{k}
$$

$$
\hat{\mathbf{B}} \equiv \iiint_{\mathrm{g} \cdot \mathbf{k} \geq 0}(\mathbf{k} \otimes \mathbf{i}+\mathbf{i} \otimes \mathbf{k})(\mathbf{k} \cdot \mathbf{K} \mathbf{k} / \mathrm{T})^{1 / 2}(\mathbf{k} \cdot \mathbf{K} \mathbf{i} / \mathrm{T}) \mathrm{d} \mathbf{k}
$$

Second moment

$$
\begin{gathered}
\alpha \equiv\left(\mathrm{K}_{1}-\mathrm{K}_{2}\right) / 2 \mathrm{~T}, \quad \beta \equiv\left[\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right) / 2 \mathrm{~T}\right]-1 \\
\text { Cylindrical polar: } \mathrm{r}, \phi, \mathrm{z}
\end{gathered}
$$

$$
\cos \chi=\mathbf{e}_{\mathrm{r}} \cdot \mathbf{e}_{1}
$$

$$
\mathbf{K}=\mathrm{T}\left[\begin{array}{ccc}
1+\beta+\alpha \cos 2 \chi & \alpha \sin 2 \chi & 0 \\
\alpha \sin 2 \chi & 1+\beta-\alpha \cos 2 \chi & 0 \\
0 & 0 & 1-2 \beta
\end{array}\right]
$$

Nearly homogeneous
α, β and χ constant; $T=T(z), v=v(z), u \equiv u_{\phi}=u(r)$

Balance equations at lowest order

$$
\begin{gathered}
u(\mathrm{r})=\Omega(\mathrm{r}) \mathrm{r}, \quad \Omega(\mathrm{r}) \equiv\left(\frac{\mathrm{GM}}{\mathrm{r}^{3}}\right)^{1 / 2} \\
-4 \rho \Omega \mathrm{~K}_{\mathrm{r} \phi}=\Gamma_{\mathrm{rr}}-\frac{\partial}{\partial \mathrm{z}}\left(\rho \mathrm{Q}_{\mathrm{zr}}\right) \\
\Omega \mathrm{K}_{\mathrm{r} \phi}=\Gamma_{\phi \phi}-\frac{\partial}{\partial \mathrm{z}}\left(\rho \mathrm{Q}_{z \mathrm{zq} \mathrm{\phi}}\right) \\
0=\Gamma_{\mathrm{zz}}-\frac{\partial}{\partial \mathrm{z}}\left(\rho \mathrm{Q}_{\mathrm{zzz}}\right) \\
\frac{1}{2} \rho \Omega\left(\mathrm{~K}_{\mathrm{rr}}-4 \mathrm{~K}_{\phi \phi}\right)=\Gamma_{\mathrm{r} \phi}-\frac{\partial}{\partial \mathrm{z}}\left(\rho \mathrm{Q}_{\mathrm{zr} \mathrm{\phi}}\right)
\end{gathered}
$$

Eigenvector basis

$$
\begin{aligned}
& -\frac{3}{2} \rho \Omega \mathrm{~T}(1+\beta+\alpha) \sin 2 \chi=\Gamma_{11}-\cos ^{2} \chi \frac{\partial}{\partial \mathrm{z}}\left(\rho \mathrm{Q}_{\mathrm{zr}}\right) \\
& -\sin 2 \chi \frac{\partial}{\partial \mathrm{z}}\left(\rho \mathrm{Q}_{\mathrm{zq}}\right)-\sin ^{2} \chi \frac{\partial}{\partial \mathrm{z}}\left(\rho \mathrm{Q}_{\mathrm{z} \phi \phi}\right) \\
& \frac{3}{2} \rho \Omega T(1+\beta-\alpha) \sin 2 \chi=\Gamma_{22}-\sin ^{2} \chi \frac{\partial}{\partial z}\left(\rho Q_{z \pi}\right) \\
& +\sin 2 \chi \frac{\partial}{\partial z}\left(\rho Q_{z \tau \phi}\right)-\cos ^{2} \chi \frac{\partial}{\partial z}\left(\rho Q_{z \phi \phi}\right) \\
& 0=\Gamma_{33}-\frac{\partial}{\partial z}\left(\rho Q_{z z z}\right) \\
& \frac{1}{2} \rho \Omega T[5 \alpha-3(1+\beta) \cos 2 \chi]=\frac{1}{2} \sin 2 \chi\left[\frac{\partial}{\partial z}\left(\rho \mathrm{Q}_{z \mathrm{zr}}\right)\right. \\
& \left.-\frac{\partial}{\partial z}\left(\rho Q_{z \phi \phi}\right)\right]-\cos 2 \chi \frac{\partial}{\partial z}\left(\rho Q_{z i \phi}\right)
\end{aligned}
$$

Integrate the last over z :

$$
\cos 2 \chi=\frac{5 \alpha}{3(1+\beta)}
$$

Integrate the isotropic part over z:

$3 \alpha \Omega \sin 2 \chi \int_{-\infty}^{\infty} v \mathrm{~T}^{1 / 2} \mathrm{dz}=\frac{6}{\pi^{3 / 2}}\left(1-\mathrm{e}^{2}\right) \frac{\operatorname{tr}(\mathbf{A})}{\mathrm{d}} \int_{-\infty}^{\infty} v^{2} \mathrm{~T}^{3 / 2} \mathrm{dz}$

Using this, the 33 component is

$$
(1-\mathrm{e}) \operatorname{tr}(\mathbf{A})=-\hat{\gamma}_{33}
$$

With the last two, the difference between the 22 and 11 components is

$$
3 \hat{\gamma}_{33}(1+\beta)=\alpha\left(\gamma_{22}-\gamma_{11}\right)
$$

Approximate

$$
\begin{aligned}
\operatorname{tr}(\mathbf{A}) \doteq & \doteq \frac{2 \pi}{35}\left(70+7 \alpha^{2}+21 \beta^{2}-2 \alpha^{2} \beta+2 \beta^{3}+\frac{\alpha^{4}}{4}+\frac{3 \alpha^{2} \beta^{2}}{2}+\frac{9 \beta^{4}}{4}\right) \\
& \gamma_{22}-\gamma_{11} \doteq-\frac{8 \pi}{35}(1+\mathrm{e}) \alpha\left(7+2 \beta-\frac{\alpha^{2}}{6}-\frac{\beta^{2}}{2}+\frac{2 \beta^{3}}{11}+\frac{2 \alpha^{2} \beta}{11}\right) \\
\hat{\gamma}_{33}= & -\frac{4 \pi}{105}(1+\mathrm{e}) \alpha\left(42 \beta+2 \alpha^{2}-6 \beta^{2}-3 \beta^{3}-\alpha^{2} \beta+\frac{\alpha^{4}}{11}+\frac{6 \alpha^{2} \beta^{2}}{11}-\frac{15 \beta^{4}}{11}\right)
\end{aligned}
$$

Solve the last two balance equations for α and β in terms of $\varepsilon \equiv 1-\mathrm{e}$

$$
\alpha^{2}=\frac{7}{2} \beta+\frac{1013}{396} \beta^{2}
$$

$$
\beta \doteq 2772 \frac{8+3 \varepsilon}{2960+9393 \varepsilon}
$$

$$
-12 \sqrt{11}\left[4851 \frac{(8+3 \varepsilon)^{2}}{(2960+9393 \varepsilon)^{2}}-\frac{10 \varepsilon}{2960+9393 \varepsilon}\right]^{1 / 2}
$$

Lowest order in $\varepsilon: \quad \beta \doteq 5 \varepsilon / 14$ and $\alpha \doteq(5 \varepsilon)^{1 / 2} / 2$

Limitations

$$
\begin{gathered}
\cos 2 \chi=\frac{5 \alpha}{3(1+\beta)} \\
\text { with } \\
\beta \doteq \frac{5 \varepsilon}{14} \text { and } \alpha \doteq \frac{(5 \varepsilon)^{1 / 2}}{2} \\
\text { implies that } \\
\quad \varepsilon \leq 0.3688 \\
\text { or } \mathrm{e} \geq 0.6312 \quad(0.6270)
\end{gathered}
$$

Isothermal

$$
\begin{gathered}
0=\frac{\partial}{\partial z}[(1-2 \beta) \nu \mathrm{T}]+\nu \mathrm{GM} \frac{\mathrm{z}}{\mathrm{r}^{3}} \\
v=v_{0} \exp \left[-\frac{\xi^{2}}{2(1-2 \beta)}\right] \quad \xi \equiv \frac{\Omega}{\mathrm{T}^{1 / 2}} \mathrm{z}
\end{gathered}
$$

$$
3 \alpha \Omega \sin 2 \chi \int_{-\infty}^{\infty} v \mathrm{dz}=\frac{6}{\pi^{3 / 2}}\left(1-\mathrm{e}^{2}\right) \frac{\operatorname{tr}(\mathbf{A}) \mathrm{T}^{1 / 2}}{\mathrm{~d}} \int_{-\infty}^{\infty} v^{2} \mathrm{~d} \mathrm{z}
$$

$$
3 \alpha \sin 2 \chi=\frac{6}{\sqrt{2} \pi^{3 / 2}}\left(1-\mathrm{e}^{2}\right) \operatorname{tr}(\mathbf{A}) \frac{\mathrm{T}^{1 / 2}}{\Omega \mathrm{~d}} v_{0}
$$

Optical depth

$$
\begin{gathered}
\tau \equiv \frac{3}{\mathrm{~d}} \int_{0}^{\infty} v(\mathrm{z}) \mathrm{dz}=3(1-\beta)^{1 / 2}\left(\frac{\pi}{2}\right)^{1 / 2} \frac{\mathrm{~T}^{1 / 2}}{\Omega \mathrm{~d}} v_{0} \\
3 \alpha \sin 2 \chi=\frac{2}{\pi^{2}}\left(1-\mathrm{e}^{2}\right) \frac{\operatorname{tr}(\mathbf{A})}{(1-\beta)^{1 / 2}} \tau
\end{gathered}
$$

$$
\begin{gathered}
v(z) \text { and } T(z) \\
0=\frac{\partial}{\partial z}(v T)+v z \frac{\Omega^{2}}{(1-2 \beta)}
\end{gathered}
$$

$3 \Omega \rho \mathrm{~T} \alpha \sin 2 \chi=\frac{6 \varepsilon(2-\varepsilon)}{\pi^{1 / 2} \mathrm{~d}} \rho \nu \mathrm{~T}^{3 / 2} \operatorname{tr}(\mathbf{A})+2 \frac{\mathrm{dq}_{\mathrm{z}}}{\mathrm{dz}}$

$$
\mathrm{q}_{\mathrm{z}}=\frac{5 \pi^{1 / 2}}{4(2-\varepsilon)} \frac{\rho \mathrm{d}}{v} \frac{(1-2 \beta)(5-4 \beta)}{\mathrm{d}_{0}-2 \mathrm{~d}_{1} \beta \mathrm{~T}+4 \mathrm{~d}_{2} \beta^{2} \mathrm{~T}^{2}} \mathrm{~T}^{1 / 2} \frac{\mathrm{dT}}{\mathrm{dz}}
$$

$$
\mathrm{d}_{0}=(33 \varepsilon-49)+\frac{9}{28}(1-\varepsilon) \frac{\operatorname{tr}\left(\hat{\mathbf{K}}^{2}\right)}{\mathrm{T}^{2}}
$$

$$
d_{1}=\frac{4}{5} \frac{(6 \varepsilon-13)}{T}
$$

$$
\mathrm{d}_{2}=-\frac{4}{35} \frac{(6 \varepsilon-13)}{\mathrm{T}^{2}}
$$

Differential Equations

$$
\begin{gathered}
\Theta^{2} \equiv \mathrm{~T} / \mathrm{T}_{0} \quad \mathrm{~F} \equiv v / v_{0} \quad \xi \equiv \Omega z / \mathrm{T}^{1 / 2} \\
\mathrm{~F}^{\prime}=-\frac{\mathrm{F}}{\Theta}\left[2 \Theta^{\prime}+\frac{\xi}{(1-2 \beta) \Theta}\right] \\
\left(\Theta^{2} \Theta^{\prime}\right)^{\prime}=-\frac{\mathrm{C}_{1}}{\mathrm{~S}^{2}} \mathrm{~F}^{2} \Theta^{3}+\frac{\mathrm{C}_{2}}{\mathrm{~S}} \mathrm{~F} \Theta^{2} \\
\mathrm{C}_{1}=\mathrm{C}_{1}(\varepsilon) \\
\mathrm{S} \equiv \frac{\Omega \mathrm{~d}}{v_{0} \mathrm{~T}_{0}^{1 / 2}}=\frac{\mathrm{C}_{2} \int_{0}^{\infty} \mathrm{F}^{2} \Theta^{3} \mathrm{~d} \xi}{\mathrm{C}_{1} \int_{0}^{\infty} \mathrm{F}^{2} \mathrm{~d} \xi}
\end{gathered}
$$

Initial Conditions

$\Theta(0)=1$
$\Theta^{\prime}(0)=0$
$F(0)=1$

6/7 Lindblad resonance

$$
\mathrm{T}_{6 / 7}=4 \pi \mathrm{R}^{2} \int_{0}^{\infty} \rho \mathrm{K}_{\mathrm{rf}} \mathrm{dz}=1.13 \times 10^{11} \mathrm{~m}^{4} \mathrm{~s}^{-2}
$$

Mass density

$$
\begin{gathered}
\Sigma \equiv 2 \int_{0}^{\infty} \rho \mathrm{dz}=300 \mathrm{~kg} \mathrm{~m}^{-2} \\
\mathrm{~T}_{0}=\frac{\mathrm{T}_{6 / 7}}{2 \pi \Sigma \mathrm{R}^{2}} \frac{1}{\alpha \sin 2 \chi} \frac{\int_{0}^{\infty} \mathrm{Fd} \xi}{\int_{0}^{\infty} \mathrm{F}^{2} \mathrm{~d} \xi} \\
\nu_{0}=\frac{\Sigma \Omega}{2 \rho_{\mathrm{s}} \mathrm{~T}_{0}^{1 / 2}} \frac{1}{\int_{0}^{\infty} \mathrm{Fd} \xi} \\
\mathrm{~d}=\frac{v_{0} \mathrm{~T}_{0}^{1 / 2}}{\Omega} \frac{\mathrm{C}_{2} \int_{0}^{\infty} \mathrm{F}^{2} \Theta^{3} \mathrm{~d} \xi}{\mathrm{C}_{1} \int_{0}^{\infty} \mathrm{F}^{2} \mathrm{~d} \xi}
\end{gathered}
$$

Shock Waves around a Moonlet in a Planar Ring

Steady, homogeneous energy balance:

$$
\begin{gathered}
-\mathrm{P}_{\mathrm{r} \phi} \dot{\gamma}+\Gamma=0 \\
\Gamma=\frac{4 \mathrm{a}(1-\mathrm{e})}{\mathrm{d}^{2}} \mathrm{~T} \\
\mathrm{a} \equiv \frac{2 \sigma \mathrm{~d}}{\pi^{1 / 2}} \rho \mathrm{G} \quad \sigma=\frac{(1+\mathrm{e})}{2} \quad \mathrm{G}=\frac{v(16-7 v)}{16(1-v)^{2}} \\
\mathrm{P}_{\alpha \beta}=(\mathrm{p}-\mathrm{a}) \delta_{\alpha \beta}-2 \mu \hat{\mathrm{D}}_{\alpha \beta} \\
\mathrm{p}=\rho(1+2 \sigma \mathrm{G}) \mathrm{T} \\
\frac{T}{\dot{\gamma}^{2} \mathrm{~d}^{2}}=\frac{1}{16(1-\sigma)}\left[1+\frac{\pi}{4} \frac{1-\mathrm{G} \sigma+\mathrm{G}(3-2 \mathrm{G}) \sigma^{2}+3 \mathrm{G}^{2} \sigma^{3}}{\mathrm{G}^{2} \sigma(5-3 \sigma)} \mathrm{a}+\frac{\pi^{1 / 2}}{8} \rho d \mathrm{~T}^{1 / 2} \frac{[1-\sigma \mathrm{G}(3 \sigma-2)]}{(5-3 \sigma) \mathrm{G}}\right. \\
\end{gathered}
$$

Dimensionless ring temperature $\mathrm{T}^{*} \equiv \mathrm{~T} /(\dot{\gamma} \mathrm{d})$ versus area fraction v

Isentropic Sound Speed

$$
\mathrm{a}^{2}=\left(\frac{\partial \mathrm{p}}{\partial \rho}\right)_{\mathrm{s}}=\frac{9 v^{4}-32 v^{3}-24 v^{2}+128}{64(1-v)^{4}} \mathrm{~T}
$$

$$
v=0.2,0.8
$$

Mach Number

$$
\begin{gathered}
u=\dot{\gamma} y \\
\frac{u^{2}}{T}=\frac{64 \mathrm{G}^{2}\left(5 \sigma-8 \sigma^{2}+3 \sigma^{3}\right)}{\pi+\mathrm{G}\left[(20 \mathrm{G}-\pi) \sigma+(3 \pi-2 \pi \mathrm{G}-12 \mathrm{G}) \sigma^{2}+3 \pi \mathrm{G} \sigma^{3}\right]}\left(\frac{\mathrm{y}}{\mathrm{~d}}\right)^{2} \\
\frac{\mathrm{a}^{2}}{\mathrm{~T}}=\frac{9 v^{4}-32 v^{3}-24 v^{2}+128}{64(1-v)^{4}}
\end{gathered}
$$

Mach Number M

$$
M^{2}=\frac{u^{2} / T}{a^{2} / T}
$$

Mach number $\mathrm{M} \equiv \mathrm{u} / \mathrm{a}$, with $\mathrm{a}^{2} \equiv(\partial \mathrm{p} / \partial \rho)_{\mathrm{s}}$, normalized by dimensionless vertical displacement, $y^{*} \equiv y / d$, versus sound speed

Simulations

Two-dimensional flow of identical, frictionless, circular disks

Event-driven simulations of hard-particles

Homogeneous Hill equations

$$
\begin{gathered}
\frac{\mathrm{d}^{2} y}{\mathrm{dt}^{2}}+2 \Omega \frac{\mathrm{dx}}{\mathrm{dt}}-3 \Omega^{2} y=0 \\
\frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}-2 \Omega \frac{\mathrm{dy}}{\mathrm{dt}}=0
\end{gathered}
$$

Time made dimensionless by Ω, lengths by d moonlet diameter D

Parameters: D/d, e, v

Particle velocity

$$
\mathrm{D} / \mathrm{d}=25, v=0.5, \mathrm{e}=0.3
$$

$\mathrm{D} / \mathrm{d}=30,25,15,10$ with $\mathrm{e}=0.3$ and $v=0.5$

$\mathrm{e}=0.3,0.5,0.6,0.8$ with $\mathrm{D} / \mathrm{d}=25$ and $v=0.5$

$$
v=0.7,0.5,0.3 \text { with } \mathrm{e}=0.3 \text { and } \mathrm{D} / \mathrm{d}=25
$$

