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Introduction 
• Relativistic hydrodynamics for a perfect fluid is widely and successfully 

used in the RHIC phenomenology. T. Hirano,  D.Teaney,  … 
. 
• A growing interest in dissipative hydrodynamics.          
    hadron corona (rarefied states); Hirano et al … 
     Generically, an analysis using dissipative hydrodynamics is needed 

even to show the dissipative effects are small. 

 A.Muronga and D. Rischke; A. K. Chaudhuri and U. Heinz,; R. Baier, 
 P. Romatschke and U. A. Wiedemann; R. Baier and P. Romatschke (2007) 
and the references cited in the last paper.  

is the theory of relativistic hydrodynamics  for a viscous fluid 
fully established? 

However, 

The answer is 
No! 

unfortunately. Cf. T. Hirano’s talk 



Fundamental problems with relativistic hydro-dynamical  
                      equations for viscous fluid  

a. Ambiguities in the form of the equation, even in the same frame and equally 
    derived from Boltzmann equation:  Landau frame; unique,   
     Eckart frame; Eckart eq. v.s. Grad-Marle-Stewart eq.; Muronga v.s. R. Baier et al  

b. Instability of the equilibrium state in the eq.’s in the Eckart frame, which affects  
    even the solutions of the causal equations, say,  by Israel-Stewart. 
    W. A. Hiscock and L. Lindblom (’85, ’87); R. Baier et al (’06, ’07)  

c. Usual 1st-order equations are acausal as the diffusion eq. is, except for 
    Israel-Stewart and  those based on the extended thermodynamics with relaxation 
    times,   but the form of  causal equations is still controversial. 

---- The purpose of the present talk  --- 
For analyzing the problems a and b first, 
we derive hydrodynaical equations for a viscous fluid from Boltzmann 
equation 
on the basis of a mechanical reduction theory (so called the RG method) and 
a natural ansatz on the origin of dissipation. 
We also show that the new equation in the Eckart frame is stable. 
We then proceeds to the causality problem..  



The separation of scales  
in the relativistic heavy-ion collisions 

 
  Liouville             Boltzmann                   Fluid dyn. 
  Hamiltonian 

  

Slower dynamics 

on the basis of the RG method;  Chen-Goldenfeld-Oono(’95),T.K.(’95) 

C.f. Y. Hatta and T.K. (’02) ,    K.Tsumura and TK (’05) 

Navier-Stokes eq. 

   Hydrodynamics is the effective dynamics of 
 the kinetic (Boltzmann) equation in the infrared refime. 



Geometrical image of reduction 
of dynamics 
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Relativistic Boltzmann equation 

 --- (1) 

Collision integral: 

Symm. property of the transition probability: 

Energy-mom. conservation; --- (2) 

Owing to (1), 

--- (3) 

Collision Invariant         : 

the general form of a collision invariant; 
which can be x-dependent! 

Eq.’s (3) and (2) tell us that 



The entropy current: 

Conservation of entropy 

i.e., the local equilibrium distribution fn; 
(Maxwell-Juettner dist. fn.) 

Local equilibrium distribution 

( )pf x =

Owing to the energy-momentum conservation,  
the collision integral also vanishes for the local equilibrium distribution fn.; 

Remark: 

[ ]( ) 0.eq
pC f x =



The standard method 
---Use of conditions of fit --- 

For, particle frame 

Moreover, 

For, energy frame 



Previous attempts to derive the dissipative 
hydrodynamics as a reduction of the dynamics 

N.G. van Kampen, J. Stat. Phys. 46(1987), 709    
unique but non-covariant form and hence not 
Landau either Eckart!                                              

Here, 

In the covariant formalism, 
in a unified way and systematically 
derive dissipative rel. hydrodynamics at once!   
 

Cf. Chapman-Enskog method to 
    derive Landau and Eckart eq.’s; 
     see,  eg, de Groot et al (‘80) 



perturbation 

Ansatz of the origin of the dissipation= the spatial inhomogeneity, 
                                                     leading to Navier-Stokes in the non-rel. case .      

would become a macro flow-velocity 

Derivation of the relativistic hydrodynamic equation  
from the rel. Boltzmann eq. --- an RG-reduction of the dynamics 
K. Tsumura, T.K. K. Ohnishi; Phys. Lett. B646 (2007) 134-140 

c.f. Non-rel.  Y.Hatta and T.K., Ann. Phys. 298 (’02), 24; T.K. and K. Tsumura, J.Phys. A:39 (2006), 8089 

time-like derivative space-like derivative 

Rewrite the Boltzmann equation as, 

Only spatial inhomogeneity leads to dissipation. 

Coarse graining of space-time 

RG gives a resummed distribution function, from which and are obtained. 
Chen-Goldenfeld-Oono(’95),T.K.(’95),    S.-I. Ei, K. Fujii and T.K. (2000) 

may not be uµ



         

Landau frame 
and Landau eq.! 

Examples 

T µν =

satisfies the Landau constraints 

0, 0u u T u Tµν µν
µ ν µ σνδ δ= ∆ =

0u N µ
µδ =



Bulk viscosity 
 
Heat conductivity 
 
Shear viscosity 
 

C.f.  Bulk viscosity may play a role in determining the acceleration 
       of the expansion of the universe, and hence the dark energy! 

-independent pθ
c.f. 

( )p pa µ µθ=In a Kubo-type form; 

with the microscopic expressions for the transport coefficients; 



Eckart (particle-flow)  frame: 
Setting  

= 

= with 

(ii) Notice that only the space-like derivative is incorporated. 
(iii) This form is different from Eckart’s and Grad-Marle-Stewart’s,  
     both of which involve the time-like derivative. 

c.f. Grad-Marle-Stewart equation; 

(i) This satisfies the GMS constraints but  not the Eckart’s. 

i.e., 

Grad-Marle-Stewart 
 constraints 

 Landau equation: 



(i) The Eckart and Grad-Marle-Stewart equations gives an instability, which  has been 
      known, and is now   found to be attributed to the fluctuation-induced dissipation, 
      proportional to      . 
(ii) Our equation (TKO equation) seems to be stable, being dependent on the values of  
    the transport coefficients and the EOS. 

K.Tsumura and T.K. (2008) 
The stability of the solutions in the particle frame: 

Duµ

The numerical analysis shows that, the solution to our equation is stable  
 at least for  rarefied gasses. 
  

A comment: 
our equations derived by the RG method naturally ensure the stability 
of the thermal equilibrium state; 
this is a consequence of the positive-definiteness of the inner product. 
(K. Tsumura and T.K., (2011)), PTP, to be published.   



II Second-order equations and moment method  

 Purpose: 
  (i)   The RG-method incorporating the first fast mode leads to    
      the  extended thermodynamics/I-S equation, 
      with  new microscopic formulae of the relaxation times. 
   
  (ii) On the basis of  this development , we propose a new ansatz 
        for the moment method as a rapid reduction 



Geometrical image of reduction 
of dynamics 
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Stochastic hydro through 
Zwenzik,Mori-Fujisaka, Kawasaki proj. 
mrthod. 



A drawback in the moment method: ambiguity 
Boltzmann eq.: 

N-th moment 

Making an ansatzs for  f_p in a truncated function space,  
f_p  can be determined in a nonperturbative way. 

BUT!  In an ambiguous way 

Arbitrary! 



Results from the RG  method（Tsumura, Kunihiro, in preparation) 
Eg.  in the energy rame 

are microscopic dissipative flows: 

c.f. Israel-Stewar 

Ｄｅｎｉｃｏｌ et ａl (2010) 

Our formulas: 

Where, 



Relaxation times: 
Results (cont’d) 

In terms of the correlation functions: 

Def. 

Then, 

A natural results! K. Tsumura and TK, in preparation. 



ＩＳ and Debicol et al 

Ｉｓｒａｅｌ－Ｓｔｅｗａｒｔ 
Ｄｅｎｉｃｏｌ ｅｔ ａｌ 

both of which do not include the second and higer order terms in the coll. op. 

The ratios of rel. time and transport coeff.: 

If the mom. dep. of the crosssection is 
neglegible,  Denicol will be fine. 

Ｒｉｔｚ－Ｇａｌｅｒｋｉｎ approx. 
Is valid. Then 

Denicol et al formulae OK 
But I-S not. 



Brief summary 
• The RG method was used to derive covariant rel. 

diss. Hydro. Eq. in a generic frame. 
• Our equaions ensure the stability of the thermal 

eq. state. 
• We extended to the case of the second order. 
• We proposed a new ansatz for Maxwell-Grad 

moment method on the basis of the RG results. 
• We have clarified the approximate nature of IS 

and Denicol et al formulae. 



Back Ups 



Basics about rel. hydrodynamics 
1. The fluid dynamic equations as conservation (balance)  equations 

local conservation of charges 
local conservation of  energy-mom. 

2.Tensor decomposition and choice of frame 
u µ ; arbitrary normalized time-like vector 

Def. 

; net density of charge i  in the Local Rest Frame 
; net flow in LRF 

; energy density in LRF ; isotropic pressure in LRF 

; heat flow in LRF 

; stress tensor in LRF 

space-like vector 
space-like projection 

space-like traceless 
tensor 



Grad-Mueller type eq. 

etc. 
with the vorticity, 





References on the RG/E method: 
• T.K. Prog. Theor. Phys. 94 (’95), 503; 95(’97), 179 
• T.K.,Jpn. J. Ind. Appl. Math. 14 (’97), 51 
• T.K.,Phys. Rev. D57 (’98),R2035 
• T.K. and J. Matsukidaira, Phys. Rev. E57 (’98), 4817 
• S.-I. Ei, K. Fujii and T.K., Ann. Phys. 280 (2000), 236 
• Y. Hatta and T. Kunihiro, Ann. Phys. 298 (2002), 24 
• T.K. and K. Tsumura, J. Phys. A: Math. Gen. 39 (2006), 8089 (hep-

th/0512108) 
• K. Tsumura, K. Ohnishi and T.K., Phys. Lett. B646 (2007), 134 
• T. K., Buturi, 65 (2010), 683. 

 

 

    L.Y.Chen, N. Goldenfeld and  Y.Oono, 
     PRL.72(’95),376; Phys. Rev. E54 (’96),376. 

 

C.f. 
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