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 Velocity Dispersion 
 deviation from coplanar, circular orbits 
 

 collisional outcome  
         – accretion/rebound/fragmentation 

 ring thickness 
 formation of micro-structures (gravitational wakes) 
 

 Spin of Ring Particles 
 Not directly observable, but inferred from spacecraft and  
 ground-based observations of rings’ thermal emission 
 

 thermal modeling with results from dynamical study  
 comparison with observations 

  constraints on particles’ physical property 
 

 Ring Viscosity 
 Angular momentum is transferred through collisions and  
 gravitational interactions 
 

  effects of particles’ gravity and spins on ring viscosity  
  



Ring particles orbiting a planet 
 
Planetesimals orbiting the Sun 
 
 
Particles: Kepler motion, perturbed by interactions 
(collisions, gravitational interaction) with other particles 
 
 
Relative velocity between particles  
determines outcome/strength of  
interactions   



Physical Size vs. Hill Radius  
 
    Hill Radius:  
 
 
 
    Planetesimals   Rings 
 
 
 
 
   
 Outcome of collision depends on rh 
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Evolution of Velocity Dispersion 
 

  In dilute systems, evolution can be described by 
 summation of successive two-body interactions 
 

  Collective effects are important in dense planetary rings 
 

no col., no grav. grav. grav. + col. 



 
Kepler Motion: 
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<PVS>:  Viscous Stirring rate 

<PDF>:  Dynamical Friction rate 

b ea 

(Ohtsuki 1999; see also Stewart & Wetherill 1988, Ida 1990) 
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(Ohtsuki 2000) 

Rings  

(rh = 1, εn = 0.5) 



N-body  
3-body 

(Ohtsuki 1999, Ohtsuki et al. 2002) 

Dilute Rings  Planetesimals 



(Ohtsuki & Emori 2000) 

τ = 0.05 τ = 0.1 

τ = 0.3 τ = 0.2 

Rings  
N-body  
3-body 

(τ =nsπ R2) 



(Salo 1992, 1995) 

Velocity Dispersion 
 

   ～ max{R2Ω, vesc} for dilute rings  (                    ) 

   ～ GΣ /Ω   for dense, self-gravitating rings 
               (Σ : ring’s surface density) 

(from poster by Yuki Yasui) 

τ=0.1 τ=0.2 τ=0.5 τ=1 

(Salo 1995) 

RGmvesc /2



(Morishima & Salo 2006) 



Planetesimals: 
 accretion, if vimp ≲ vesc 
 

 (fragmentation is important for high-velocity impacts;  
   Agnor & Asphaug 2004, Kokubo & Genda 2010) 

 

 
Rings:  
 

 rebound in most regions 
 accretion is possible near the outer edge,  
 depending on density 

rh ≫ 1 

rh ～ 1 



 0.1       0.3         0.5        0.7       0.9 

 rp = rh
-1 

 rh
 

10    5   3.3        2.0         1.4       1.1 

(e.g. Ohtsuki 1993) 

rh = 1.33 

1.67 



(Salo 1995) 

(Salo 1992, Karjalainen & Salo 2004, Porco et al. 2007, Charnoz et al. 2007) 



Planetesimals: 
 accretion, if vimp ≲ vesc 
 

 (fragmentation is important for high-velocity impacts;  
   Agnor & Asphaug 2004, Kokubo & Genda 2010) 

 
Rings:  
 

 rebound in most regions 
 accretion is possible near the outer edge,  
 depending on density 

rh ≫ 1 

rh ～ 1 

     Spins caused by collisions 
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1st term: “systematic component” 
 

2nd term: “random component”  

(Dones & Tremaine 1993) 

Relative importance of each component 

depends on distribution of mass and angular 

momentum of impactors 



(Dones & Tremaine 1993) 

(Ohtsuki & Ida 1998) 

Sun ← 

Systematic component is too small to account for 
terrestrial planet rotation (Earth-Moon system, Mars) 
 Large impacts played a major role  



Slow prograde rotation  

 7.03.0
eq



Moonlet’s initial rotation rate 

(Morishima & Salo 2004, Ohtsuki 2004a, b) 
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(Ohtsuki 2004) 
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 εt  : tangential coefficient of restitution 

 σx : particles’ velocity dispersion 
 

⇒ Random component is dominant for m/M ≿ 0.3 
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(Ohtsuki 2005, 2006) 

(sm = Rω: spin velocity) 
Collisional stirring 

 Rotational friction 
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(n(R) ∝ R-3) 

(Ohtsuki 2005, 2006) 

Rmax = 1m 

Rmax = 10m 



(Morishima & Salo 2006) 
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with gravity 

without gravity 



(Ohtsuki & Toyama 2005) 
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 Small particles:     large scale height, fast spin 
 Large particles:     small scale height, slow spin 
 

 particles’ spin states have vertical heterogeneity 
  (important for thermal modeling) 

2/12 e

2/12  i
Rmax = 10m 

Rmax = 1m 



 Dilute rings: 
 

 particles’ radial random motion 
 due to collisions and gravitational 
 encounters 
 
 Dense, non-gravitating rings: 
 

 collisions 
 
 Dense, self-gravitating rings: 
 

 gravitational wakes 

Angular momentum is transported through 
collisions and gravitational interactions 

(Goldreich & Tremaine 1978, Araki & Tremaine 1986, Daisaka et al. 2001) 
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 Velocity Dispersion   
 determined by collisions,   gravitational encounters,  or 

rings’ self-gravity 
 small particles with large scale height, and 

   large particles with small scale height 
 determines collisional outcome 

 

 Spin of Ring Particles 
 small particles fast rotation + random orientation, and 

   large particles with slow rotation with aligned spin axes 
 important for thermal modeling 

 

 Ring Viscosity 
 determined by particles’ random motion in dilute rings   
 determined by self-gravity in dense rings 


