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Introduction
Velocity Dispersion

deviation from coplanar, circular orbits

collisional outcome

— accretion/rebound/fragmentation
ring thickness
formation of micro-structures (gravitational wakes)

Spin of Ring Particles

Not directly observable, but inferred from spacecraft and
ground-based observations of rings’ thermal emission <

thermal modeling with results from dynamical study <
comparison with observations
——> constraints on particles’ physical property

Ring Viscosity
Angular momentum is transferred through collisions and
gravitational interactions

—> effects of particles’ gravity and spins on ring viscosity



Introduction

Ring particles orbiting a planet

Planetesimals orbiting the Sun

Particles: Kepler motion, perturbed by interactions
(collisions, gravitational interaction) with other particles
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Relative velocity between particles -«

determines outcome/strength of
interactions




Collision and Gravitational Interactions
Physical Size vs. Hill Radius \
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Formation of Gravitational Wakes

(Salo 1992, 1995)
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(from poster by Yuki Yasui)

Velocity Dispersion

~ max{R2Q, v...} for dilute rings (V.. =/2Gm/R)

~ G2 /Q for dense, self-gravitating rings
2 . ring’s surface density

(Salo 1995)
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Collisional Outcome
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Planetesimals: r, » 7 -
) accretion, if v, SV

mp esc T~

(fragmentation is important for high-velocity impacts;
Agnor & Asphaug 2004, Kokubo & Genda 2010)

Rings: r, ~ 7

= rebound in most regions
accretion is possible near the outer edge
depending on density
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Gravitational Accretion in Rings
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(Salo 1995)

(Salo 1992, Karjalainen & Salo 2004, Porco et al. 2007, Charnoz et al. 2007)



Collisional Outcome
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Planetesimals: r, > 7
B accretion, if v, <V
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‘‘‘‘‘

(fragmentation is important for high-velocity impacts;
Agnor & Asphaug 2004, Kokubo & Genda 2010)

Rings: r, ~ 1 r )
rebound in most regions ‘ @ QO

®) . accretion is possible near the outer edge,
depending on density
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Spins caused by collisions




Planetary Rotation by Accretion of

Planetesimals
N
L->ml
1=1
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15t term: “systematic component” ‘/' T

_____________

Relative importance of each component
depends on distribution of mass and angular

momentum of impactors (Dones & Tremaineiiaae)
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Moonlet Rotation
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€; : tangential coefficient of restitution
o, : particles’ velocity dispersion

= Random component is dominant for m/M = 0.3
(Ohtsuki 2004)



(m) {(Aw%)%wmdb} dm

mht
L {m(503> +

(m1 + m)2

m(s




lo.. =4

ran —

N 0-spin

S~
~

1
10
Relative velocity dispersion / Escape velocity




20
TIME (T)




10” 10°
Particle radius (m)




a=120,000km

a=100,000km

G
Xy
—
A
(Q\]
3
Y,

1 1.0
Particle Radius (m)







10" 10° } 10" 10°
Particle radius (m) Particle radius (m)

large scale height, f
small scale height, «




Viscosity in Planetary Rings

Angular momentum Is transported through
collisions and gravitational interactions

mmeerings: @809 L
particles’ radial random motion \'
due to collisions and graVItatlonal '\
encounters c’r o I

V=——

Dense, non-gravitating rings:
collisions

Dense, self-gravitating rings:
gravitational wakes  v=C(h)—5—

(Goldreich & Tremaine 1978, Araki & Tremaine 1986, Daisaka et al. 2001)



Summary

Velocity Dispersion
determined by collisions, gravitational encounters, or
rings’ self-gravity
small particles with large scale height, and
large particles with small scale height
determines collisional outcome

Spin of Ring Particles
small particles fast rotation + random orientation, and

large particles with slow rotation with aligned spin axes
important for thermal modeling

Ring Viscosity
determined by particles’ random motion in dilute rings
determined by self-gravity in dense rings



