Critical scaling for the jamming transition of granular materials

M. Otsuki (Aoyama Gakuin Univ.) H. Hayakawa (Kyoto Univ.)

Granular materials

Sheared granular materials

Jamming transition for athermal materials

Model of granular materials

•
$$F_n = k \delta^{\Delta} - \eta v_n$$

Elastic part Dissipative part

•
$$\Delta = I$$
 (Disk)

•
$$\Delta = 3 / 2$$
 (Sphere)

Tangential force

- Friction coefficient : μ
- $F_t < \mu F_n$ (Coulomb's friction)
- Frictionless : $\mu = 0$
- Frictional : $\mu > 0$

Dynamics (constant shear rate)

 $\Phi = 0.80 < \Phi_{|}$

 $\Phi = 0.85 > \Phi_{\rm I}$

Characteristic features

Effect of Friction

Frictionless ($\mu = 0.0$)

Frictional ($\mu = 2.0$)

Hysteresis loop for frictional case

Effect of friction (pressure)

Frictionless ($\mu = 0.0$) Continuous transition

Frictional ($\mu = 2.0$) Discontinuous transition

Effect of friction (type of the transition)

Summary & Discussion

- Jamming transition : Athermal transition from liquid-like states to solid-like states.
- Critical exponents depend on the interaction.
- Continuous transition for frictionless case, discontinuous transition for frictional case.
- Hysteresis loop, many critical densities.
- Our result may provide a better understanding of dynamics and non-linear transport properties of dense matters.