Simulating the formation of fine-scale structure in Saturn's Rings

Heikki Salo (Dept. Physics, U. Oulu)

Yukawa Institute, Kyoto, 01.11.2011

Why are Saturn's rings interesting?

• Cassini Orbiting Tour

Close range images during SOI (July 2004) Solar Equinox (August 2009)

Rings = Ideal Orbital Laboratory

Many old ideas of galaxy dynamics apply much better to Saturn's rings (e.g. Julian-Toomre wakes)

• Topics of this talk:

Simulation modeling self-Gravity wakes, Viscous instabilities/overstabilities Briefly: propellers, damping of vertical corrugations

Collaborators:

- * Dynamics of dense rings/embedded moonlets: J.Schmidt, F. Spahn, M.Seiss (Potsdam), M.Sremcevic, N. Albers (Boulder)
- Modeling Voyager, HST, Arecibo, Cassini VIMS data: R. French (Wellesley), P. Nicholson, M. Hedman (Cornell)
 CIRS data: R. Morishima,, K. Ohtsuki (Kobe)

OVERVIEW OF SATURN'S RINGS

• $\sim 10^{16}$ METER-SIZED ICY PARTICLES

Keplerian differential rotation $\ \Omega \propto a^{-1.5}$ Power-law size distribution: $dN/dr \propto r^{-3}$, 1cm < r < 10m

• FREQUENT MUTUAL IMPACTS > 10/orbit

Local vertical thickness < 100 m (Ring diameter 270 000 km)

 \Rightarrow Impact speeds $\sim 1 cm/sec~$ (orbital speed $V_{orb} \sim 20 km/s$)

DISSIPATIVE IMPACTS + CONSERVATION OF Iz

Rapid local vertical flattening: <u>timescale a few weeks at most</u> Slow radial spreading: whole ring: timescale $> 10^8$ years

 \Rightarrow LOCAL AND GLOBAL EVOLUTION CAN BE STUDIED SEPARATELY

- SATELLITE PERTURBATIONS: $M_{Mimas}/M_{Planet} \sim 10^{-7}$
- SELF-GRAVITY: $M_{ring}/M_{Planet} \sim 5 \cdot 10^{-8}$

COMPARED TO GALACTIC DISKS:

- Dynamically very old $T_{age} > 10^9 T_{dyn}$
- Extreme example of rotationally supported system: $v/\sigma \sim 10^6$
- Scale of gravity-related structures << system size satellite-driven density waves $\lambda \sim 10~km$ local gravity-wakes $\lambda \sim 100m$
- Rings inside Roche zone gravity limited by particles's physical density

MODELING DENSE SELF-GRAVITATING RINGS

• INGREDIENTS

- impacts + selfgravity + differential rotation
- external satellites, embedded moonlets and "icebergs"
- METHODS

- kinetic theory: Goldreich-Tremaine-Borderies, Araki, Shu, Stewart, Hämeen-Anttila, Latter & Ogilve
- hydrodynamics Schmit & Tscharnuter, Schmidt & Salo & Spahn
- N-body: Trulsen, Brahic, Lukkari, Salo, Richardson, Mosqueira, Lewis, Daisaka, Ohtsuki, Charnoz, ...
 - ⇒ Local simulation method (Wisdom & Tremaine ; Toomre & Kalnajs)
 - ⇒ combination with photometric simulations (Salo & French ; Porco & Richardson)

LOCAL SIMULATION METHOD

Gravity: (Note: compared to galaxy dynamics, need to be 'collisional')

- Nearby particles: PP forces ($\Delta < 0.5 \lambda_{cr}$) (Salo 1992)
- Intermed. range: 3D FFT in shearing coordinates (Salo 1995)
- Distant gravity: F_z from infinite sheet

Tabulation:

Position+velocity+spin snapshots Pressure tensor components P_{ij} Fourier components, autocorrelation etc

LOCAL ENERGY BALANCE

COLLISIONAL DISSIPATION = VISCOUS GAIN $w_c(1-\epsilon^2)c^2 =
u(\partial\Omega/\partial r)^2$

VISCOSITY: (from P_{xy})

- momentum transfer via radial excursions (local viscosity; WT87 relates to $< c_x c_y >$)
- transfer at physical impacts (nonlocal viscosity; WT87 $< \Delta x c_y >_{impacts} / (N\Delta t)$
- transfer via grav. forces (gravitational viscosity; Daisaka et al. 2001 $< \int \Delta x F_y > /(N\Delta t)$)
 - ⇒ TIME-SCALE OF LOCAL BALANCE: 10-100 impacts/particle

RANDOM VELOCITY, THICKNESS, VISCOSITY depend on:

- elasticity of impacts, friction
- optical depth ($w_c \propto au_{dyn}$)
- particle size distribution

 \Rightarrow

• particles' internal density (+distance via $r_h \propto
ho^{1/3} a$)

VISCOSITY vs DENSITY RELATION

determines linear stability properties

CRUCIAL ROLE OF ELASTICITY

Frost-covered particles (Bridges et al. 1984 laboratory measurements)

 \Rightarrow flat ring: H \sim 10 meters,

susceptible to gravitational instability (also viscous overstability)

'Smooth' particles (Hatzes et al. 1988 laboratory measurements)

 \Rightarrow "thick" multilayer ring H \sim 100 meter,

gravitationally unresponsive (may lead to viscous instability)

MEASUREMENTS OF PARTICLE ELASTICITY

SELF-GRAVITY WAKES

SELF-GRAVITY

• Gravitational collapse + dissipation + differential rotation

- \Rightarrow Self-regulation \Rightarrow minimum $Q_{ ext{Toomre}} \sim 1-2$ (corresponds to $h \sim 10-20m$)
- Spontaneous formation of gravity wakes (Salo 1992 (Nature 359, 612) radial scale: $\lambda_{cr} = 4\pi^2 G \Sigma / \Omega^2 \sim 10 - 100m$ pitch-angle: $\sim 20^0$ (in Keplerian velocity field)

SELFGRAVITY WAKES RELATED TO JULIAN-TOOMRE WAKES

Julian & Toomre 1966: response of gravitating stellar disk around orbiting mass enhancement Toomre 1981: 'SWING-AMPLIFICATION'

self-gravity wakes

superposition of Julian-Toomre wakes excited around each ring particle

ANALOGY TO JT-WAKES CONFIRMED BY AUTOCORRELATION ANALYSIS

Individual snapshots from a simulation

+ corresponding 2D autocorrelation plots

Average autocorrelation = JT Wake (see Toomre & Kalnajs 1991)

STELLAR SYSTEMS VS PLANETARY RINGS

- SCALE \sim Toomre's λ_{cr} \sim KPC in galaxies, \sim 100 m in rings
- Dissipative impacts in rings

 thermostate Q ~ 2

 Stellar disks: heating via wakes makes the disk unresponsive

 (unless fresh supply of cool material though the timescale of heating increases with N)

SG-WAKES SENSITIVE TO VELOCITY DISPERSION

If impacts are able to maintain thickness which corresponds to Q>2

 \Rightarrow wake structure would be absent

FROSTY ICE:

SMOOTH ICE:

BRIDGES-ELASTICITY MODEL

HATZES-ELASTICITY MODEL

SG-WAKES AND SIZE DISTRIBUTION

Size distribution \Rightarrow $H_{small} > H_{large}$

SG-wakes weaker among small particles (Salo, French 2004)

SIMULATED SG-WAKES VS DISTANCE AND OPTICAL DEPTH

Salo et al. (2008); reproduced by Schmidt et al. 2009, Cuzzi et al. 2010

identical particles, ho=900 kg/m 3 , $\epsilon=0.5$ $4\lambda_{cr} imes 4\lambda_{cr}$ $N\propto a^6 au^3$

APPROACHING ROCHE DISTANCE \Rightarrow **ACCRETION**

details depend on ϵ_n , friction size distribution

Karjalainen and Salo 2007

- Charnoz et al. 2010: viscous spreading spills rings over the Roche distance
 - \Rightarrow formation of small moons outside the main rings

SIDESTEP I: ADHESIVE FORCES

Figure 6: 2D Autocorrelation plots of the simulations of Fig.2. In the upper

Attractive force between overlapping pairs, normalized by min. velocity for sticking

2-fold force

4-fold

8-fold

16-fold

Corresponding autocorrelation plots very similar to self-gravity case

SIDESTEP II: SWING AMPLIFIED SPIRALS IN GALAXY N-BODY

Figure 5. Evolution of the simulation disc during an isolated evolution of 3.2 Gyr with $M_d = 0.333$. The size of the upper frames is 1200×1200 arcsec, while the lower frames show the inner 200×200 arcsec region. $N = 4 \times 10^6$ particles are simulated with the improved resolution.

© 2000 RAS, MNRAS 319, 393-413

Before making tidal model: Try to understand isolated evolution

Salo and Laurikainen 2000, MNRAS

Individual packets

SPIRAL PACKET - COROTATING FRAME

Figure 10. Example of the shape of an m = 2 wave packet, seen in the isolated run of Fig. 9a at $T \approx 1$ Gyr. The plot has been obtained by superposing the m = 2 density components from approximately 50 different time-steps between T = 0.9 and T = 1.1, in a coordinate system rotating with the pattern speed of the packet, $\Omega_p = 57 \text{ km s}^{-1} \text{ kpc}^{-1}$. In the right-hand panel, the same packet is displayed in polar coordinates. The black-white dashed lines indicate the shape of the critical spiral, having at each distance the radial wavenumber $k = k_{cr}$, while the solid line in the polar plot represents the shape of the shortbranch wave calculated from the linear Lin–Shu dispersion relation.

Well described by λ_{cr} spirals! (see also Donner and Thomasson 1984)

HOW DO SG-WAKES MANIFEST IN SATURN RING OBERVATIONS: AZIMUTHAL ASYMMETRY

Wakes unresolved, but have systematic $\sim 20^{\circ}$ pitch angle \Rightarrow

Ring photometric properties should depend on ring longitude and elevation

(Salo et al. 2004)

INDICATIONS OF SELF-GRAVITY WAKES

- Azimuthal brightness asymmetry (Dones et al. 1993, Salo et al 2004, French et al, 2007, Porco et al. 2008)
- Ring's Arecibo radar echo: (Nicholson et al. 2005)
- Saturn microwave radiation (Dunn et al. 2004, 2007)
- Cassini occultation experiments

UVIS: ((Colwell et al. 2006, 2007)

VIMS: (Hedman et al 2007)

RSS: (Marouf et al 2006)

- Cassini CIRS: ring filling factor (Ferrari et al 2009)
- VIMS Omicron Ceti Occultation:
- Damping of satellite density waves (Tiscareno et al. 2008) consistent with gravitational viscosity (Daisaka et al. 2001)
- Strong peaking of asymmetry in the mid A-ring is a problem

(wakes perhaps hidden by debris = free-floating regolith released in fast impacts? Salo et al. 2007 DPS)

VISCOUS INSTABILITY AND OVERSTABILITY

LINEAR STABILITY: DEPENDS ON $\eta(au)$ RADIAL MASS FLUX: $au_r \sim -\partial \eta/\partial r$

VISCOUS INSTABILITY

Particle flux directed toward density maxima

- Dense/cool ringlets
- Hot/rarefied region

 \Rightarrow **BIMODAL**

= Original explanation for "ringlet structure" discovered by Voyager, but later discarded

Hämeen-Anttila, Lukkari, Ward, Lin & Bodenheimer

Requires smooth elastic particles, inconsistent with gravity wakes.

Size-dependent selective instability?
 works also between two dense regions!
 Salo & Schmidt (Icarus, 2010)

However, requires rather specific ϵ_n vs particle size dependence

OSCILLATORY INSTABILITY (VISCOUS OVERSTABILITY)

Upper left corner:

weak gravity, high impact frequency ⇒ axisymmetric oscillations superposed on inclined selfgravity wakes

Ring overshoots in smoothing density variations due to steep rise of viscosity with density.

Salo et al. 2001, Schmidt et al. 2001

►

OVERSTABILITY II

Oscillations with epicyclic frequency Time-evolution over 1/2 periods \Rightarrow

- Hydrodynamical stability analysis Schmit & Tscharnuter 1995, 1995
 predicted too easy onset of overstability
- Disagreement with N-body simulations (Salo et al. 2001)
 ⇒ improved hydrodynamic models Schmidt et al. 2001, Schmidt & and Salo 2003)
- proper kinetic treatment
 Latter & Ogilve 2006, 2007

OVERSTABLE OSCILLATIONS (τ =1.4, ρ =300, r=1m, ϵ -Bridges, a=100 000km)

OSCILLATORY INSTABILITY III

- Cause of the 150m oscillations in RSS occultations? (Thomsen et al 2007)
- UVIS occultations: axisymmetric structures (Colwell et al. 2007)

Matches the natural scale seen in simulations

VERTICAL SPLASHING - SHADOWS

Dense rings nearly imcompressible ⇒ overstable oscillations associated with vertical 'splashing' (Borderies, Goldreich, Tremaine 1984)

Effect strong enough

to cause shadows (middle frame)

OBSERVABLE EFFECTS OF NON-RESOLVED SHADOWS?

TOY-model (true shadows non-resolved!)

Mean brightess as function of azimuth: Even 10% systematic variations predicted Salo &Schmidt 2011 DPS

MODELING PROPELLERS

• Embedded moonlet $> 1 \text{ km} \Rightarrow$ circumferential gap

Smaller moonlets \Rightarrow viscous diffusion limits the azimuthal extent of the gap

s-shaped propeller Spahn & Sremcevic 2000

- First observed propellers: unlit side (Tiscareno, Burns et al 2006, Nature)
 - \Rightarrow uncertain whether bright streaks correspond to

gaps (separation $\sim 2R_{HILL}$) or density crests (separation $\sim 4R_{HILL}$)

 Our photometric modeling (Sremcevic, Schmidt, Salo et al. 2007, Nature) supports bright density crests, mainly due to release of surface regolith

ONGOING PHOTOMETRIC MODELING:

Same dynamical/debris model consistent with various lit/unlit observations of Bleriot

⇒ consistent estimate for moonlet size (Halme et al. in preparation)

0.0490

0.0300

RING FILLING FACTOR/PHOTOMETRY

OPPOSITION BRIGHTENING

Coherent backscattering at particle surface regolith

or

disappearence of mutual shadow between particles ?

(Debated for over 50 years!)

Lumme et al. 1983: due mutual shadowing

 \Rightarrow filling factor 0.02

How to reconcile with dense rings?)

MUTUAL SHADOWING DEPENDS ON ELEVATION

 τ =1.0, Bridges-elasticity, 0.20m < r < 5m

• Observed HST phase curves show elevation dependence!

 ⇒ Intrinsic and mutual shadowing can be separated! (Salo and French, Icarus 2010)
 Narrow peak consistent with flat dense ring predicted by dynamics

SUMMARY

• SG-WAKES WERE EXPECTED IN SATURN'S RINGS

• SELF-GRAVITY WAKES CAN ACCOUNT FOR:

A-ring and inner B ring asymmetry in HST observations Radar asymmetry Longitude and elevation angle dependent optical depth

• OVERSTABILITY:

High density/weak gravity regime \Rightarrow 150 m oscillations, modulations(?)

• IMPLIED RING PARTICLE PROPERTIES:

internal density $\sim 300-450~{\rm kg/m^3}$ elasticity close to Bridges et al. 1984 'frosty ice'

• STILL A PROBLEM: IRREGULAR VARIATIONS:

Role of selective intabilities?

• Particle adhesion?

150 meter fine-structure

SUMMARY

RINGS = IDEAL LABORATORY

- Dynamically old
- Impacts keep it cold
- Interesting mechanism can be treated locally

Self-gravity wakes and propellers Excitation of forced spiral density waves and bending waves Freely winding vertical corrugations

WHAT NEXT?

Poster by Fujii, Kokubo : using GRAPE-DR may enable N >> 1e6 in near future

SOME POSSIBILITIES:

Propeller migration, Damping of density waves with realistic viscosity Evolution of particle size distribution, ring vertical splashing etc.

Saturn's rings at 30 cm resolution ? 100 000 particles illuminated with 10⁸ photons

Thank You!