Dynamics

Plane ary Rings

J Schmidt if salo
A Bodrova, N Briliantov, H Hayakawa, P Krapivsky, F Spahn, M Sremcevic

\rightarrow all giant planets in the solar system have rings
ess around extry Holar
nets? dusty components co-exist
->

\rightarrow all giant planets in the sollar system have rings around extritolar solar my
os as
ants?
-> dusty components co-exist with dense, collisional rings
-> rings and moons: common frame of creation and evolution
\rightarrow all giant planets in the soliar system have rings around extrivolar
sollar sy
gis
ars
-> dusty components co-exist wity dense, cofiisional rings
-> rings and moons: common frame of creation and evolution
-> collisional rings:
structure on all length-sca_es
\rightarrow all giant planets in the sollar system have rings 1. nos around extritplar II rates?
-> dusty components co-exist wity dense, coflisional rings
-> rirgs and moons: common frame of creation and evolution
-> collisional rings:
structure on all length-scanes
-> similar physics-for proto-planetary disks, acdretion disks
-> brief summary on dust rings

- dense, cc lisional rings basic \quad ysical properties and processes ring st lecture, instabilities kinetics of the size-distribution

dust rings

dust rings

dust rings

- particle size: nanometer to millimeter

dust rings
- particle size: nanometer to millimeter - sources:

تejecta from hypervelocitì-impacts of interplanetary dust
-volcanic activity (Io, Erceladus)

- capture (not dominant but pssible, Horanyi et ad. JGR)

dust rings
- particle size: nanometer to millimeter - sources:
${ }^{23} e j e c t a$ from hypervelocity-impacts of interplanetary dust
-volcanic activity (Io, Enceladus)
- capture (not dominant but p ssible, Horanyi et ai f JGR)
Sinks:
-collision with satellites (or planetary ring particles)
-plasma and UV sputtering
-small grains may evolve into hyperbolic orbits (driver is the planetary/ EM field)
dust rings
- particle size: nanometer to millimeter - sources:
ejecta from hypervelocity-impacts of interplanetary dust
-volcanic activity (Io, Enceladus)
- capture, (not dominant but possible, Horanyi et al if JGR)
Sinks:
-collision with satellites (or planetary ring particles)
-plasma and UV sputtering
-small grains may evolve into hyperbolic orbits (driver is the planetary/EM field)
-grain collisions (often negligible)

non-gravitational forces

acceleration by planetary (electro-)magnetic fields:

$$
\dot{\vec{v}} \propto \frac{q}{m} \propto \frac{1}{r^{2}} \quad\left(\Phi_{e q u} \propto \frac{q}{r}\right)
$$

grain charging: solar UV, plasma currents, secondary electron emission

non-gravitational forces

acceleration by planetary (electro-)magnetic fields:

$$
\dot{\vec{v}} \propto \frac{q}{m} \propto \frac{1}{r^{2}} \quad\left(\Phi_{e q u} \propto \frac{q}{r}\right)
$$

acceleration by solar radiation:

$$
\dot{\vec{v}} \propto \frac{\sigma}{m} \propto \frac{1}{r}
$$

direct radiation pressure and Poynting-Robertson drag

non-gravitational forces

acceleration by planetary (electro-)magnetic fields:

$$
\dot{\vec{v}} \propto \frac{q}{m} \propto \frac{1}{r^{2}} \quad\left(\Phi_{e q u} \propto \frac{q}{r}\right)
$$

direct radiation pressure and Poynting-Robertson drag

grain charging: solar UV, plasma currents, secondary electron emission

acceleration by solar radiation:
$\dot{\vec{v}} \propto \frac{\sigma}{m} \propto \frac{1}{r}$
acceleration by solar radiation:
$\dot{\vec{v}} \propto \frac{\sigma}{m} \propto \frac{1}{r}$
drag exerted by planetary plasma
direct drag force and coulomb drag

further perturbation forces

-higher gravity moments of the planet
-gravity of satellites
-solar gravity

further perturbation forces

-higher gravity moments of the planet
-gravity of satellites
-solar gravity
perturbation forces depend differently on
-> grain size
-> planetary distance
-> solar distance
-> magnetospheric conditions
and may vary stochastically
(e.g. Schaffer \& Burns, 1987)

further perturbation forces

-higher gravity moments of the planet
-gravity of satellites
-solar gravity
perturbation forces depend differently on
-> grain size
-> planetary distance
-> solar distance
-> magnetospheric conditions
and may vary stochastically
(e.g. Schaffer \& Burns, 1987)
=> rich dynamics

circumplanetary dust dynamics

dust sinks

circumplanetary dust dynamics

circumplanetary dust dynamics

circumplanetary dust dynamics

observables: optical depth, number densities, orbital elements, spectral slopes, particle composition, seasonal variations, ...

example

Saturn's charming ringlet is perturbed by sunlight: on the anti-sun side the ringlet is always found closer to the planet (Hedman et al., 2010)

dust becomes visible at high phase angles (sun - object - observer)

consider dust grain on circular orbit

consider dust grain

 on circular orbitSUN

(Horanyi et al, 1992, Hedman et al., 2010)

consider dust grain

 on circular orbit-> radiation pressure induces eccentricity

SUN

(Horanyi et al, 1992, Hedman et al., 2010)

consider dust grain

 on circular orbit-> radiation pressure induces eccentricity
-> planetary oblateness: advance of pericenter

SUN

(Horanyi et al, 1992, Hedman et al., 2010)

consider dust grain

 on circular orbit-> radiation pressure induces eccentricity
-> planetary oblateness: advance of pericenter

SUN

(Horanyi et al, 1992, Hedman et al., 2010)

consider dust grain

 on circular orbit-> radiation pressure induces eccentricity
-> planetary oblateness: advance of pericenter

SUN

(Horanyi et al, 1992, Hedman et al., 2010)

consider dust grain

 on circular orbit-> radiation pressure induces eccentricity
-> planetary oblateness: advance of pericenter

(Horanyi et al, 1992, Hedman et al., 2010)
consider dust grain on circular orbit
-> radiation pressure induces eccentricity
-> planetary oblateness: advance of pericenter
-> eccentricity begins to shrink after apocenter has passed the solar direction

SUN

(Horanyi et al, 1992, Hedman et al., 2010)
consider dust grain on circular orbit
-> radiation pressure induces eccentricity
-> planetary oblateness: advance of pericenter
-> eccentricity begins to shrink after apocenter has passed the solar direction

SUN

(Horanyi et al, 1992, Hedman et al., 2010)
consider dust grain on circular orbit
-> radiation pressure induces eccentricity
-> planetary oblateness: advance of pericenter
-> eccentricity begins to shrink after apocenter has passed the solar direction

SUN

(Horanyi et al, 1992, Hedman et al., 2010)
consider dust grain on circular orbit
-> radiation pressure induces eccentricity
-> planetary oblateness: advance of pericenter
-> eccentricity begins to shrink after apocenter has passed the solar direction

SUN

(Horanyi et al, 1992, Hedman et al., 2010)
consider dust grain on circular orbit
-> radiation pressure induces eccentricity
-> planetary oblateness: advance of pericenter
-> eccentricity begins to shrink after apocenter has passed the solar direction

SUN

(Horanyi et al, 1992, Hedman et al., 2010)
consider dust grain on circular orbit
-> radiation pressure induces eccentricity
-> planetary oblateness: advance of pericenter
-> eccentricity begins to shrink after apocenter has passed the solar direction

SUN

(Horanyi et al, 1992, Hedman et al., 2010)
consider dust grain on circular orbit
-> radiation pressure induces eccentricity
-> planetary oblateness: advance of pericenter
-> eccentricity begins to shrink after apocenter has passed the solar direction
-> fixed envelope points towards the sun "heliotropic" ring

SUN

(Horanyi et al, 1992, Hedman et al., 2010)

dense

collisional rings

-> dense, collisional

* basic physic and processe

ring struct ce instabirities

* kinetics of stribution
basic physical processes
- macroscopic (meter-size) particles:
inelastic collisions
- collective motion.
shear flow, induced by planets
- individual ring particlés:
follow Keplerian orbits
- self-gravity
- external perturbations
- coagulation/fragmentation
basic physical processes, cnt'd energy: dissipation at two levels

basic physical processes, cnt'd energy: dissipation at two levels

collective motion

collisions

+ gravitátional scattering
basic physical processes, cnt'd energy: dissipation at two levels

collective motion
collisions
+ gravitátional
collisions scattering

basic physical processes, cnt'd energy: dissipation at two levels

basic physical processes, cnt'd
energy: dissipation at two levels

basic physical processes, cnt'd

steady state

collision frequency \rightarrow TA
basic physical processes, cnt'd steady state

collision frequency \rightarrow '
basic physical processes, cnt'd steady state

collision frequency \rightarrow TA
basic physical processes, cnt'd

steady state

collision frequency \rightarrow TA
basic physical processes, cnt'd

steady state

collision frequency ->

basic physical processes, cnt'd

steady state

collision frequency \rightarrow T

basic physical processes, cnt'd steady state

basic physical processes, cnt'd

steady state

basic physical processes, cnt'd
steady state random velocity maintained by particle collisions:

$$
c \approx \Omega R=4 \times 10^{-3} \frac{m}{s}\left[\frac{\Omega}{2 \times 10^{-4} s^{-1}}\right]\left[\frac{R}{10 m}\right]
$$

or gravitational instability:

$$
\begin{aligned}
& Q=\frac{c \Omega}{3.36 G \Sigma} \approx 2 \\
& c \approx 1.1 \times 10^{-3} \frac{\mathrm{~m}}{\mathrm{~s}}\left[\frac{Q}{2}\right]\left[\frac{\Sigma}{500 \mathrm{~kg} / \mathrm{m}^{2}}\right]\left[\frac{2 \times 10^{-4} \mathrm{~s}^{-1}}{\Omega}\right]
\end{aligned}
$$

basic physical processes, cnt'd
angular momentum flux: shear stress

collisions

+ gravitátional scattering
basic physical processes, cnt'd
angular momentum flux: shear stress

collective motion

random motion
coupling by collisions

+ gravitátional scattering
basic physical processes, cnt'd
angular momentum flux: shear stress
collective
motion
basic physical processes, cnt'd
angular momentum flux:
shear stress
collective
motion

random motion

molerular (1ocal)

 transports
aonussional,

coupling by collisions

+ gravitátional scattering
particle bulk density -> distance from Saturn ->
(
particle bulk density -> distance from Saturn ->

r_{h}	0.49	0.57	0.66	0.74	0.82	0.90
a	60	70	80	90	100	110

(Salo, BAAS, 2008
Schmidt et al, 2009) $0.98 \quad 1.07$

120
1.07

130
1.15

140
1.23

150

particle bulk density -> distance from Saturn ->
(Salo, BAAS, 2008
Schmidt et al, 2009) $0.98 \quad 1.07$
1.07

130
1.15

140
1.23

150

[~100m wake structure in Saturn's rings

$Q=c \Omega$

$3.36 G \Sigma \approx 2$

angular momentum

Global budget of energy and
(Lynden-Bell and Pringle, 1974)
$e=\frac{h^{2}}{2 r^{2}}+\Phi(r)$ energy per unit mass
$h=\Omega r^{2}$
angular momentum per unit mass

Global budget of energy and

 angular momentum(Lynden-Bell and Pringle, 1974)

$e=\frac{h^{2}}{2 r^{2}}+\Phi(r)$ energy per unit mass
$h=\Omega r^{2} \quad$ angular momentum per unit mass
allow two neighboring segments to exchange mass and angular momentum

Global budget of energy and angular momentum

(Lynden-Bell and Pringle, 1974)

$e=\frac{h^{2}}{2 r^{2}}+\Phi(r)$ energy per unit mass
$h=\Omega r^{2} \quad$ angular momentum per unit mass
allow two neighboring segments to exchange mass and angular momentum
$\delta E=\delta\left(m_{1} e_{1}\right)+\delta\left(m_{2} e_{2}\right)$ should be negative
$\delta H=\delta\left(m_{1} h_{1}\right)+\delta\left(m_{2} h_{2}\right) \equiv \delta H_{1}+\delta H_{2}=0 \quad$ conserved
$\delta M=\delta m_{1}+\delta m_{2}=0$ conserved

total change in energy:
$\delta E=\delta\left(m_{1} e_{1}\right)+\delta\left(m_{2} e_{2}\right)$

$$
\begin{aligned}
& =\delta m_{1} e_{1}+\delta m_{2} e_{2}+\Omega_{1} m_{1} \delta h_{1}+\Omega_{2} m_{2} \delta h_{2} \\
& =\delta m_{1}\left[\left(e_{1}-\Omega_{1} h_{1}\right)-\left(e_{2}-\Omega_{2} h_{2}\right)\right]+\delta H_{1}\left(\Omega_{1}-\Omega_{2}\right)
\end{aligned}
$$

total change in energy:
$\delta E=\delta\left(m_{1} e_{1}\right)+\delta\left(m_{2} e_{2}\right)$

$$
\begin{aligned}
& =\delta m_{1} e_{1}+\delta m_{2} e_{2}+\Omega_{1} m_{1} \delta h_{1}+\Omega_{2} m_{2} \delta h_{2} \\
& =\delta m_{1}[\underbrace{\left.\left(e_{1}-\Omega_{1} h_{1}\right)-\left(e_{2}-\Omega_{2} h_{2}\right)\right]}_{\text {positive }}+\delta H_{1}(\underbrace{\Omega_{1}-\Omega_{2}}_{\text {negative }})
\end{aligned}
$$

Global budget of energy and

 angular momentum(Lynden-Bell and Pringle, 1974)

total change in energy:
$\delta E=\delta\left(m_{1} e_{1}\right)+\delta\left(m_{2} e_{2}\right)$
$=\delta m_{1} e_{1}+\delta m_{2} e_{2}+\Omega_{1} m_{1} \delta h_{1}+\Omega_{2} m_{2} \delta h_{2}$
$=\delta m_{1}[\underbrace{\left.\left.e_{1}-\Omega_{1} h_{1}\right)-\left(e_{2}-\Omega_{2} h_{2}\right)\right]}_{\text {positive }}+\delta H_{1}(\underbrace{\Omega_{1}-\Omega_{2}}_{\text {negative }})$
$=>$ energy is lowered if mass flows inward and/or angular momentum flows outward

INITIAL DISTRIBUTION

AFTER 150 REVOLUTIONS

top view

side view

=> the disk flattens and spreads

INITIAL DISTRIBUTION

AFTER 150 REVOLUTIONS

> top
> view

side view

分 (回)

(Heikkl Salo)

scale hight: $\mathrm{H} \sim \mathrm{c} / \Omega$

(pressure vs vertical

Saturn gravity)

(Heikki Salo)

scale hight: $\mathrm{H} \sim \mathrm{c} / \Omega$

(pressure vs vertical
Saturn gravity)
surface number density
number density:

$$
n \propto \frac{n_{2}}{H} e^{-\frac{z^{2}}{2 H^{2}}}
$$

(Heikki Salo)

scale hight: $\mathrm{H} \sim \mathrm{c} / \Omega$
(pressure vs vertical
Saturn gravity)
surface number density
number density:
$n \propto \frac{n_{2}}{H} e^{-\frac{z^{2}}{2 H^{2}}}$
collision frequency: $\omega_{c o l} \propto n c R^{2}$
(no self-gravity) $\quad \propto n_{2} \Omega R^{2}$
scale hight: $\mathrm{H} \sim \mathrm{c} / \Omega$
(pressure vs vertical
Saturn gravity)
surface number density
number density:
$n \propto \frac{n_{2}}{H} e^{-\frac{z^{2}}{2 H^{2}}}$
collision frequency: $\omega_{\text {col }} \propto n c R^{2}$
(no self-gravity) $\quad \propto n_{2} \Omega R^{2}$
mean free path
viscosity: $\quad \nu \propto l^{2} \omega_{\text {col }}, \quad R<l=c / \omega_{\text {col }}<c / \Omega$
scale hight: $\mathrm{H} \sim \mathrm{c} / \Omega$
(pressure vs vertical
Saturn gravity)
surface number density
number density:
$n \propto \frac{n_{2}}{H} e^{-\frac{z^{2}}{2 H^{2}}}$
collision frequency: $\omega_{\text {col }} \propto n c R^{2}$
(no self-gravity) $\quad \propto n_{2} \Omega R^{2}$
mean free path
viscosity: $\quad \nu \propto l^{2} \omega_{\text {col }}, \quad R<l=c / \omega_{\text {col }}<c / \Omega$
$\left(R^{2} \omega_{\text {col }} \quad\right.$, very dense
$\nu \propto\left\{\frac{c^{2}}{\omega_{c o l}}\right.$, dense case $\} \propto c^{2} \frac{\omega_{c o l}}{\omega_{c o l}^{2}+\Omega^{2}}+$ const $\times R^{2} \omega_{c o l}$
$\left(\frac{c^{2}}{\Omega^{2}} \omega_{\text {col }}\right.$, dilute case $)$

$$
\} \propto c^{2} \frac{\omega_{c o l}}{\omega_{c o l}^{2}+\Omega^{2}}+\text { const. } \times R^{2} \omega_{c o l}
$$

(Heikkl Salo)
scale hight: $\mathrm{H} \sim \mathrm{c} / \Omega$
(pressure vs vertical
Saturn gravity)
surface number density
number density:
$n \propto \frac{n_{2}}{H} e^{-\frac{z^{2}}{2 H^{2}}}$
collision frequency: $\omega_{\text {col }} \propto n c R^{2}$
(no self-gravity) $\quad \propto n_{2} \Omega R^{2}$
mean free path
viscosity: $\quad \nu \propto l^{2} \omega_{\text {col }}, \quad R<l=c / \omega_{\text {col }}<c / \Omega$
$\left(R^{2} \omega_{\text {col }} \quad\right.$, very dense
molecular
$\nu \propto\left\{\frac{c^{2}}{\omega_{c o l}}\right.$, dense case $\} \propto c^{2} \frac{\omega_{c o l}}{\omega_{c o l}^{2}+\Omega^{2}}+$ const. $\times R^{2} \omega_{c o l}$
(local)
$\left(\frac{c^{2}}{\Omega^{2}} \omega_{\text {col }}\right.$, dilute case $)$
scale hight: $\mathrm{H} \sim \mathrm{C} / \Omega$
(pressure vs vertical
Saturn gravity)
surface number density
number density:
$n \propto \frac{n_{2}}{H} e^{-\frac{z^{2}}{2 H^{2}}}$
collision frequency: $\omega_{\text {col }} \propto n c R^{2}$
(no self-gravity) $\quad \propto n_{2} \Omega R^{2}$
mean free path
viscosity: $\quad \nu \propto l^{2} \omega_{\text {col },} \quad R<l=c / \omega_{\text {col }}<c / \Omega$
$\nu \propto\left\{\begin{array}{ll}R^{2} \omega_{c o l}, & , \text { very dense } \\ \frac{c^{2}}{\omega_{c o l}} & , \text { dense case } \\ \frac{c^{2}}{\Omega^{2}} \omega_{c o l}, & \text { dilute case }\end{array}\right\} \propto c^{2} \frac{\omega_{c o l}}{\omega_{c o l}^{2}+\Omega^{2}}+$ (non-local)
scale hight: $\mathrm{H} \sim \mathrm{C} / \Omega$
(pressure vs vertical
Saturn gravity)
surface number density

$$
n \propto \frac{n_{2}}{H} e^{-\frac{z^{2}}{2 H^{2}}}
$$

collision frequency: $\omega_{\text {col }} \propto n c R^{2}$ (no self-gravity) $\quad \propto n_{2} \Omega R^{2}$
mean free path
viscosity: $\quad \nu \propto l^{2} \omega_{\text {col }}, \quad R<l=c / \omega_{\text {col }}<c / \Omega$

ring structure

structure on all scales

first structure seen in the rings: The Cassini Division

Giovanni Domenico Cassini

structure on all scales

(from Cuzzi et al., Science, 2010)

structure on all scales

(from Cuzzi et al., Science, 2010)

structure on all scales

(from Cuzzi et al., Science, 2010)

structure on all scales

(from Cuzzi et al., Science, 2010)

propellers

(Tiscareno et al., 2006, Nature, Sremcevic et al., 2007, Nature Spahn \& Sremcevic, 2000, A\&A, Sremcevic et al, 2002, MNRS)

(Tiscareno et al., 2008, ApJ)

structure on all scales

(from Cuzzi et al., Science, 2010)

structure on all scales

waves induced by exterior moons

(from Cuzzi et al., Science, 2010)

(from Cuzzi et al., Science, 2010)

structure on all scales

 gravitational wakes: $\sim 100 \mathrm{~m}$

(from Cuzzi et al., Science, 2010)

self-gravity wakes: brightness

 asymmetry
observation:

- Camichel I958 Franklin I987 Dones et al I993
- HST
- CASSINI:

VIMS, UVIS, ISS, RSS
CIRS

structure on all scales

(from Cuzzi et al., Science, 2010)

structure on all scales

(from Cuzzi et al., Science, 2010)

Mass and Momentum Balance + Self Gravity

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) \sigma & =-\sigma \vec{\nabla} \cdot \vec{u} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) u_{r}-\frac{u_{\varphi}^{2}}{r} & =-\frac{\partial \Phi_{\text {Planet }}}{\partial r}-\frac{\partial \Phi_{\text {Disk }}}{\partial r}-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{r} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{r}}{r}\right) u_{\varphi} & =-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{\varphi} \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi_{D i s k}}{\partial r}\right) & =4 \pi G \sigma \delta(z)
\end{aligned}
$$

Mass and Momentum Balance + Self Gravity

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) \sigma & =-\sigma \vec{\nabla} \cdot \vec{u} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) u_{r}-\frac{u_{\varphi}^{2}}{r} & =-\frac{\partial \Phi_{\text {Planet }}}{\partial r}-\frac{\partial \Phi_{\text {Disk }}}{\partial r}-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{r} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{r}}{r}\right) u_{\varphi} & =-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{\varphi} \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi_{D i s k}}{\partial r}\right) & =4 \pi G \sigma \delta(z)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { linearize about } & \Sigma=\text { const, } u=0, v=0 \\
& u_{\varphi} \longrightarrow-\frac{3}{2} \Omega r+v
\end{array}
$$

Mass and Momentum Balance + Self Gravity

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) \sigma & =-\sigma \vec{\nabla} \cdot \vec{u} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) u_{r}-\frac{u_{\varphi}^{2}}{r} & =-\frac{\partial \Phi_{\text {Planet }}}{\partial r}-\frac{\partial \Phi_{\text {Disk }}}{\partial r}-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{r} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{r}}{r}\right) u_{\varphi} & =-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{\varphi} \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi_{D i s k}}{\partial r}\right) & =4 \pi G \sigma \delta(z)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { linearize about } & \Sigma=\text { const, } u=0, v=0 \\
& u_{\varphi} \longrightarrow-\frac{3}{2} \Omega r+v
\end{array}
$$

$\dot{\sigma}=-\Sigma u^{\prime}$
$\dot{u}=2 \Omega v-\left(\left.\frac{1}{\Sigma} \frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G}{|k|}\right) \sigma^{\prime}+\frac{\alpha}{\Sigma} \eta_{0} u^{\prime \prime}$
$\dot{v}=-\frac{\Omega}{2} u+\frac{1}{\Sigma}\left(\eta_{0} v^{\prime \prime}-\left.\frac{3}{2} \Omega \frac{\partial \eta}{\partial \sigma}\right|_{0} \sigma^{\prime}\right)$

Mass and Momentum Balance + Self Gravity

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) \sigma & =-\sigma \vec{\nabla} \cdot \vec{u} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) u_{r}-\frac{u_{\varphi}^{2}}{r} & =-\frac{\partial \Phi_{\text {Planet }}}{\partial r}-\frac{\partial \Phi_{\text {Disk }}}{\partial r}-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{r} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{r}}{r}\right) u_{\varphi} & =-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{\varphi} \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi_{\text {Disk }}}{\partial r}\right) & =4 \pi G \sigma \delta(z)
\end{aligned}
$$

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { linearize about } \Sigma=\text { const, } u=0, v=0 \\
\text { radial modes } \\
\text { comoving rotating frame }
\end{array} \\
& \dot{\sigma}=-\Sigma v \\
& \dot{u}=2 \Omega v-\left(\left.\frac{1}{\Sigma} \frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G}{|k|}\right) \sigma^{\prime}+\frac{\alpha}{\Sigma} \eta_{0} u^{\prime \prime} \\
& \dot{v}=-\frac{\Omega}{2} u+\frac{1}{\Sigma}\left(\eta_{0} v^{\prime \prime}-\left.\frac{3}{2} \Omega \frac{\partial \eta}{\partial \sigma}\right|_{0} \sigma^{\prime}\right)
\end{aligned}
$$

Mass and Momentum Balance + Self Gravity

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) \sigma & =-\sigma \vec{\nabla} \cdot \vec{u} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) u_{r}-\frac{u_{\varphi}^{2}}{r} & =-\frac{\partial \Phi_{\text {Planet }}}{\partial r}-\frac{\partial \Phi_{\text {Disk }}}{\partial r}-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{r} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{r}}{r}\right) u_{\varphi} & =-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{\varphi} \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi_{\text {Disk }}}{\partial r}\right) & =4 \pi G \sigma \delta(z)
\end{aligned}
$$

linearize about $\quad \Sigma=$ const, $u=0, v=0$
radial modes
comoving rotating frame
hydrodynamic (newtonian) stress, pressure
$\dot{\sigma}=-\Sigma u^{\prime}$
$\dot{u}=2 \Omega v-\left(\left.\frac{1}{\Sigma} \frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G}{|k|}\right) \sigma^{\prime}+\frac{\alpha}{\Sigma} \eta_{0} u^{\prime \prime} P_{r r}=p-2 \eta \frac{\partial u_{r}}{\partial r}+\left(\frac{2}{3} \eta-\xi\right) \vec{\nabla} \cdot \vec{u}$
$\dot{v}=-\frac{\Omega}{2} u+\frac{1}{\Sigma}\left(\eta_{0} v^{\prime \prime}-\left.\frac{3}{2} \Omega \frac{\partial \eta}{\partial \sigma}\right|_{0} \sigma^{\prime}\right) \quad P_{r \varphi}=-\eta\left(\frac{\partial u_{\varphi}}{\partial r}+\frac{1}{r} \frac{\partial u_{r}}{\partial \varphi}-\frac{u_{\varphi}}{r}\right)$

Mass and Momentum Balance + Self Gravity

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) \sigma & =-\sigma \vec{\nabla} \cdot \vec{u} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) u_{r}-\frac{u_{\varphi}^{2}}{r} & =-\frac{\partial \Phi_{\text {Planet }}}{\partial r}-\frac{\partial \Phi_{\text {Disk }}}{\partial r}-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{r} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{r}}{r}\right) u_{\varphi} & =-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{\varphi} \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi_{\text {Disk }}}{\partial r}\right) & =4 \pi G \sigma \delta(z)
\end{aligned}
$$

linearize about $\quad \Sigma=$ const, $u=0, v=0$
radial modes
comoving rotating frame
hydrodynamic (newtonian) stress, pressure
$\dot{\sigma}=-\Sigma u^{\prime}$
$\dot{u}=2 \Omega v-\left(\left.\frac{1}{\Sigma} \frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G}{|k|}\right) \sigma^{\prime}+\frac{\alpha}{\Sigma} \eta_{0} u^{\prime \prime} P_{r r}=p-2 \eta \frac{\partial u_{r}}{\partial r}+\left(\frac{2}{3} \eta-\xi\right) \vec{\nabla} \cdot \vec{u}$
$\dot{v}=-\frac{\Omega}{2} u+\frac{1}{\Sigma}\left(\eta_{0} v^{\prime \prime}-\left.\frac{3}{2} \Omega \frac{\partial \eta}{\partial \sigma}\right|_{0} \sigma^{\prime}\right) \quad P_{r \varphi}=-\eta\left(\begin{array}{l}\frac{\partial u_{\varphi}}{\partial r}+\frac{1}{r} \frac{\partial u_{r}}{\partial \varphi}-\left(\frac{u_{\varphi}}{r}\right) \\ \text { shear viscosity }\end{array}\right.$
bulk viscosity

Mass and Momentum Balance + Self Gravity

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) \sigma & =-\sigma \vec{\nabla} \cdot \vec{u} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) u_{r}-\frac{u_{\varphi}^{2}}{r} & =-\frac{\partial \Phi_{\text {Planet }}}{\partial r}-\frac{\partial \Phi_{\text {Disk }}}{\partial r}-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{r} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{r}}{r}\right) u_{\varphi} & =-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{\varphi} \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi_{\text {Disk }}}{\partial r}\right) & =4 \pi G \sigma \delta(z)
\end{aligned}
$$

linearize about $\quad \Sigma=$ const, $u=0, v=0$
radial modes
comoving rotating frame
hydrodynamic (newtonian) stress, pressure

$$
\dot{\sigma}=-\Sigma u^{\prime}
$$

$$
\dot{u}=2 \Omega v-\left(\left.\frac{1}{\Sigma} \frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G}{|k|}\right) \sigma^{\prime}+\frac{\alpha}{\Sigma} \pi, v^{\prime \prime} P_{r r}=p-2 \eta \frac{\partial u_{r}}{\partial r}+\left(\frac{2}{3} \eta-\xi\right) \vec{\nabla} \cdot \vec{u}
$$

$$
\begin{array}{r}
\dot{v}=-\frac{\Omega}{2} u+\frac{1}{\Sigma}\left(\eta_{0} v^{\prime \prime}-\left.\frac{3}{2} \Omega \frac{\partial \eta}{\partial \sigma}\right|_{0} \sigma^{\prime}\right) \quad P_{r \varphi}=-\eta\left(\frac{\partial u_{\varphi}}{\partial r}+\frac{1}{r} \frac{\partial u_{r}}{\partial \varphi}-\frac{u_{\varphi}}{r}\right) \\
\alpha=\frac{4}{3}+\frac{\xi_{0}}{\eta_{0}}=\text { const shearviscosity }
\end{array}
$$

Mass and Momentum Balance + Self Gravity

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) \sigma & =-\sigma \vec{\nabla} \cdot \vec{u} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) u_{r}-\frac{u_{\varphi}^{2}}{r} & =-\frac{\partial \Phi_{\text {Planet }}}{\partial r}-\frac{\partial \Phi_{\text {Disk }}}{\partial r}-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})^{r} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{r}}{r}\right) u_{\varphi} & =-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P}) \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi_{\text {Disk }}}{\partial r}\right) & =4 \pi G \sigma \delta(z)
\end{aligned}
$$

Subscript 0: steady state

$$
\dot{\sigma}=-\sum u^{\prime}
$$

$$
\begin{aligned}
\dot{u} & =2 \Omega v-\left(\left.\frac{1}{\Sigma} \frac{\partial p}{\partial \sigma}\right|_{0} ^{L}-\frac{2 \pi G}{|k|}\right) \sigma^{\prime}+\frac{\alpha}{\Sigma} \eta_{0} u^{\prime \prime} P_{r r} \\
\dot{v} & =-\frac{\Omega}{2} u+\frac{1}{\Sigma}\left(\eta_{0} v^{\prime \prime}-\left.\frac{3}{2} \Omega \frac{\partial \eta}{\partial \sigma}\right|_{0} \sigma^{\prime}\right) \quad P_{r}=-\eta\left(\frac{\partial u_{r}}{\partial r}+\left(\frac{2}{3} \eta-\xi\right) \vec{\nabla} \cdot\right.
\end{aligned}
$$

$$
\alpha=\frac{4}{3}+\frac{\xi_{0}}{\eta_{0}}=\text { const } \quad \text { shear viscosity }
$$

bulk viscosity

Mass and Momentum Balance + Self Gravity

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) \sigma & =-\sigma \vec{\nabla} \cdot \vec{u} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) u_{r}-\frac{u_{\varphi}^{2}}{r} & =-\frac{\partial \Phi_{\text {Planet }}}{\partial r}-\frac{\partial \Phi_{\text {Disk }}}{\partial r}-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})^{2} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{r}}{r}\right) u_{\varphi} & =-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{\varphi} \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi_{\text {Disk }}}{\partial r}\right) & =4 \pi G \sigma \delta(z)
\end{aligned}
$$

linearize about $\Sigma=$ const, $u=0, v=0$
radial modes
comoving rotating frame
hydrodynamic (newtonian) stress, pressure

$$
\dot{\sigma}=-\Sigma u^{\prime}
$$

$$
\dot{u}=2 \Omega v-\left(\left.\frac{1}{\Sigma} \frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G}{|k|}\right) \sigma^{\prime}+\frac{\alpha}{\Sigma} \eta_{0} u^{\prime \prime} P_{r r}=p-2 \eta \frac{\partial u_{r}}{\partial r}+\left(\frac{2}{3} \eta-\xi\right) \vec{\nabla} \cdot \vec{u}
$$

$$
\dot{v}=-\frac{\Omega}{2} u+\frac{1}{\Sigma}\left(\eta_{0} v^{\prime \prime}-\left.\frac{3}{2} \Omega \frac{\partial \eta}{\partial \sigma}\right|_{0} \sigma^{\prime}\right) \quad P_{r \varphi}=-\eta\left(\frac{\partial u_{\varphi}}{\partial r}+\frac{1}{r} \frac{\partial u_{r}}{\partial \varphi}-\frac{u_{\varphi}}{r}\right)
$$

$$
\alpha=\frac{4}{3}+\frac{\xi}{\eta_{0}}=\text { corrot } \quad \text { shear viscosity }
$$

Mass and Momentum Balance + Self Gravity

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) \sigma & =-\sigma \vec{\nabla} \cdot \vec{u} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) u_{r}-\frac{u_{\varphi}^{2}}{r} & =-\frac{\partial \Phi_{\text {Planet }}}{\partial r}-\frac{\partial \Phi_{\text {Disk }}}{\partial r}-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{r} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{r}}{r}\right) u_{\varphi} & =-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{\varphi} \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi_{\text {Disk }}}{\partial r}\right) & =4 \pi G \sigma \delta(z)
\end{aligned}
$$

linearize about $\quad \Sigma=$ const, $u=0, v=0$
radial modes
comoving rotating frame
hydrodynamic (newtonian) stress, pressure

$$
\dot{\sigma}=-\Sigma u^{\prime}
$$

$$
\dot{u}=2 \Omega v-\left(\left.\frac{1}{\Sigma} \frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G}{|k|}\right) \sigma^{\prime}+\frac{\alpha}{\Sigma} \eta_{0} u^{\prime \prime} P_{r r}=p-2 \eta \frac{\partial u_{r}}{\partial r}+\left(\frac{2}{3} \eta-\xi\right) \vec{\nabla} \cdot \vec{u}
$$

$$
\dot{v}=-\frac{\Omega}{2} u+\frac{1}{\Sigma}\left(\eta_{0} v^{\prime \prime}-\left.\frac{3}{2} \Omega \frac{\partial \eta}{\partial \sigma}\right|_{0} \frac{\left.\left.\sigma^{\prime}\right) \quad P_{r \varphi}=-\eta\left(\frac{\partial u_{\varphi}}{\partial r}+\frac{1}{r} \frac{\partial u_{r}}{\partial \varphi}-\frac{u_{\varphi}}{r}\right) . \quad \varepsilon_{0}\right)}{}\right.
$$

this term can trigger instabilities

$$
\alpha=\frac{4}{3}+\frac{\xi_{0}}{\eta_{0}}=\text { const } \text { shear viscosity }
$$

bulk viscosity

Mass and Momentum Balance + Self Gravity

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) \sigma & =-\sigma \vec{\nabla} \cdot \vec{u} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}\right) u_{r}-\frac{u_{\varphi}^{2}}{r} & =-\frac{\partial \Phi_{\text {Planet }}}{\partial r}-\frac{\partial \Phi_{\text {Disk }}}{\partial r}-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{r} \\
\left(\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{r}}{r}\right) u_{\varphi} & =-\frac{1}{\sigma}(\vec{\nabla} \cdot \vec{P})_{\varphi} \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi_{\text {Disk }}}{\partial r}\right) & =4 \pi G \sigma \delta(z)
\end{aligned}
$$

linearize about $\quad \Sigma=$ const, $u=0, v=0$ radial modes comoving rotating frame hydrodynamic (newtonian) stress, pressure $\dot{\sigma}=-\Sigma u^{\prime} \quad$ Poisson equation for thin sheet
$\dot{u}=2 \Omega v-\left(\left.\frac{1}{\Sigma} \frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G}{|k|}\right) \sigma^{\prime}+\frac{\alpha}{\Sigma} \eta_{0} u^{\prime \prime}$

$\dot{v}=-\frac{\Omega}{2} u+\frac{1}{\Sigma}\left(\eta_{0} v^{\prime \prime}-\left.\frac{3}{2} \Omega \frac{\partial \eta}{\partial \sigma}\right|_{0} \sigma^{\prime}\right) \quad$| Disk (r, z) | $=-\frac{2 \pi G}{\|k\|} \sigma(r) \exp [-\|k z\|]$ |
| :--- | :--- |
| $\sigma(r)$ | $\propto \exp [i k r]$ |

Viscous instability

Diffusion instabilty:
-> proposed in 80s as explanation for B ring irregular structure
-> discarded later: conditions likely not fulfilled in dense rings
-> but process itself works
-> would lead to bimodal optical depth profile:
hot + low tau
cold + high tau
as in B2
Hämeen-Antilla78
Ward81
Lin\&Bodenheimer81
Lukkari81

$$
\begin{aligned}
& \dot{\sigma}=-\Sigma u^{\prime} \\
& \dot{u}=2 \Omega v-\left(\left.\frac{1}{\Sigma} \frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G}{|k|}\right) \sigma^{\prime}+\frac{\alpha}{\Sigma} \eta_{0} u^{\prime \prime} \\
& \dot{v}=-\frac{\Omega}{2} u+\frac{1}{\Sigma}\left(\eta_{0} v^{\prime \prime}-\left.\frac{3}{2} \Omega \frac{\partial \eta}{\partial \sigma}\right|_{0} \sigma^{\prime}\right) \\
& \dot{\sigma}=\left.3 \frac{\partial \eta}{\partial \sigma}\right|_{0} \sigma^{\prime \prime}
\end{aligned}
$$

$$
\eta \equiv \nu \sigma
$$

$$
\nu \propto c^{2} \frac{\omega_{c o l}}{\omega_{c o l}^{2}+\Omega^{2}}+\text { const. } \times R^{2} \omega_{c o l}+\text { const }_{2} \times \frac{\sigma^{2} G^{2}}{\Omega^{3}}
$$

$$
\omega_{c o l} \propto n_{2}
$$

Oscillatory instability (overstability)

$$
\begin{aligned}
\dot{\sigma} & =-\Sigma u^{\prime} \\
\dot{u} & =2 \Omega v-\left(\left.\frac{1}{\Sigma} \frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G}{|k|}\right) \sigma^{\prime}+\frac{\alpha}{\Sigma} \eta_{0} u^{\prime \prime} \\
\dot{v} & =-\frac{\Omega}{2} u+\frac{1}{\Sigma}\left(\eta_{0} v^{\prime \prime}-\left.\frac{3}{2} \Omega \frac{\partial \eta}{\partial \sigma}\right|_{0} \sigma^{\prime}\right)
\end{aligned}
$$

Oscillatory instability (overstability)

$$
\begin{aligned}
\dot{\sigma} & =-\Sigma u^{\prime} \\
\dot{u} & =2 \Omega v-\left(\left.\frac{1}{\Sigma} \frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G}{|k|}\right) \sigma^{\prime}+\frac{\alpha}{\Sigma} \eta_{0} u^{\prime \prime} \\
\dot{v} & =-\frac{\Omega}{2} u+\frac{1}{\Sigma}\left(\eta_{0} v^{\prime \prime}-\left.\frac{3}{2} \Omega \frac{\partial \eta}{\partial \sigma}\right|_{0} \sigma^{\prime}\right)
\end{aligned}
$$

$$
\ddot{u}+u-\left(\left.\frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G \Sigma}{|k|}\right) u^{\prime \prime}=\nu_{0}\left(f(r, t)+\alpha \nu_{0} u^{\prime \prime \prime \prime}\right)
$$

$$
\nu_{0}=\frac{\eta_{0}}{\Sigma} \text { (kinematic shear viscosity) }
$$

Oscillatory instability (overstability)

$$
\begin{aligned}
\dot{\sigma} & =-\Sigma u^{\prime} \\
\dot{u} & =2 \Omega v-\left(\left.\frac{1}{\Sigma} \frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G}{|k|}\right) \sigma^{\prime}+\frac{\alpha}{\Sigma} \eta_{0} u^{\prime \prime} \\
\dot{v} & =-\frac{\Omega}{2} u+\frac{1}{\Sigma}\left(\eta_{0} v^{\prime \prime}-\left.\frac{3}{2} \Omega \frac{\partial \eta}{\partial \sigma}\right|_{0} \sigma^{\prime}\right)
\end{aligned}
$$

Acoustic inertial wave
Viscous forcing

$$
\begin{aligned}
\nu_{0} & =\frac{\eta_{0}}{\Sigma} \text { (kinematic shear viscosity) } \\
f(r, t) & =(1+\alpha) \dot{u}^{\prime \prime}+\int_{-\infty}^{t} d \tilde{t}\left[\left.3 \Omega^{2} \frac{\partial \ln \eta}{\partial \ln \sigma}\right|_{0} u^{\prime \prime}-\left(\left.\frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G \Sigma}{|k|}\right) u^{\prime \prime \prime \prime}\right]
\end{aligned}
$$

Viscously Forced Wave Equation

$$
\begin{aligned}
\dot{\sigma} & =-\Sigma u^{\prime} \\
\dot{u} & =2 \Omega v-\left(\left.\frac{1}{\Sigma} \frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G}{|k|}\right) \sigma^{\prime}+\frac{\alpha}{\Sigma} \eta_{0} u^{\prime \prime} \\
\dot{v} & =-\frac{\Omega}{2} u+\frac{1}{\Sigma}\left(\eta_{0} v^{\prime \prime}-\left.\frac{3}{2} \Omega \frac{\partial \eta}{\partial \sigma}\right|_{0} \sigma^{\prime}\right)
\end{aligned}
$$

$$
\ddot{u}+u-\left(\left.\frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G \Sigma}{|k|}\right) u^{\prime \prime}=\nu_{0}\left(f(r, t)+\alpha \nu_{0} u^{\prime \prime \prime \prime}\right)
$$

rapid oscillations

Multiscale expansion:

$$
\begin{aligned}
u(r, t, \theta) & =A(\theta) u_{0}(r, t) \\
\frac{\partial}{\partial t} & \rightarrow \frac{\partial}{\partial t}+\nu_{0} \frac{\partial}{\partial \theta}
\end{aligned}
$$

$$
\begin{aligned}
\ddot{u}+u-\left(\left.\frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G \Sigma}{|k|}\right) u^{\prime \prime} & =\nu_{0}\left(f(r, t)+\alpha \nu_{0} u^{\prime \prime \prime \prime}\right) \\
u(r, t, \theta) & =A(\theta) u_{0}(r, t)
\end{aligned}
$$

$$
\frac{\partial^{2}}{\partial t^{2}} u_{0}+u_{0}-\left(\left.\frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G}{|k|}\right) u_{0}^{\prime \prime}=0 \quad \text { at zeroth order in } \nu_{0}
$$

$$
\begin{aligned}
\ddot{u}+u-\left(\left.\frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G \Sigma}{|k|}\right) u^{\prime \prime} & =\nu_{0}\left(f(r, t)+\alpha \nu_{0} u^{\prime \prime \prime \prime}\right) \\
u(r, t, \theta) & =A(\theta) u_{0}(r, t)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial^{2}}{\partial t^{2}} u_{0}+u_{0}-\left(\left.\frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G}{|k|}\right) u_{0}^{\prime \prime} & =0 \quad \text { at zeroth order in } \nu_{0} \\
u_{0} & =\exp (i \omega t+i k x) \\
\omega & = \pm \sqrt{\Omega^{2}-2 \pi G \Sigma|k|+\left.\frac{\partial p}{\partial \sigma}\right|_{0} k^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\ddot{u}+u-\left(\left.\frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G \Sigma}{|k|}\right) u^{\prime \prime} & =\nu_{0}\left(f(r, t)+\alpha \nu_{0} u^{\prime \prime \prime \prime}\right) \\
u(r, t, \theta) & =A(\theta) u_{0}(r, t)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial^{2}}{\partial t^{2}} u_{0}+u_{0}-\left(\left.\frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G}{|k|}\right) u_{0}^{\prime \prime} & =0 \quad \text { at zeroth order in } \nu_{0} \\
u_{0} & =\exp (i \omega t+i k x) \\
\omega & = \pm \sqrt{\Omega^{2}-2 \pi G \Sigma|k|+\left.\frac{\partial p}{\partial \sigma}\right|_{0} k^{2}}
\end{aligned}
$$

$$
\frac{\partial}{\partial \theta} A=-\frac{3}{2} k^{2}\left(\frac{1+\alpha}{3}-\left.\frac{\partial \ln \eta}{\partial \ln \sigma}\right|_{0}\right) A+O\left(k^{3}\right)
$$

$$
\begin{aligned}
\ddot{u}+u-\left(\left.\frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G \Sigma}{|k|}\right) u^{\prime \prime} & =\nu_{0}\left(f(r, t)+\alpha \nu_{0} u^{\prime \prime \prime \prime}\right) \\
u(r, t, \theta) & =A(\theta) u_{0}(r, t)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial^{2}}{\partial t^{2}} u_{0}+u_{0}-\left(\left.\frac{\partial p}{\partial \sigma}\right|_{0}-\frac{2 \pi G}{|k|}\right) u_{0}^{\prime \prime} & =0 \quad \text { at zeroth order in } \nu_{0} \\
u_{0} & =\exp (i \omega t+i k x) \\
\omega & = \pm \sqrt{\Omega^{2}-2 \pi G \Sigma|k|+\left.\frac{\partial p}{\partial \sigma}\right|_{0} k^{2}}
\end{aligned}
$$

$$
\frac{\partial}{\partial \theta} A=-\frac{3}{2} k^{2} \underbrace{\left(\frac{1+\alpha}{3}-\left.\frac{\partial \ln \eta}{\partial \ln \sigma}\right|_{0}\right)} A+O\left(k^{3}\right)
$$

Exponential growth of amplitude for
$\left.\frac{\partial \ln \eta}{\partial \ln \sigma}\right|_{0}>\frac{1+\alpha}{3}$
steep increase of $\boldsymbol{\eta}$ with increasing σ should be fulfilled
=> ring flow undergoes Hopf bifurcation (Schmit\&Tscharnuter, Icarus, 1996, 1999, Spahn et al, 2000, Salo et al, 2001, Schmidt et al, 2001)
=> traveling waves of 100 m wavelength (Schmidt\&Salo, PRL, 2003)
=> kinetic theory + hydrodynamic nonlinear wavetrain solutions
(Latter \& Ogivie, Icarus, 2005, 2007, 2009)

U

CASSINI UVIS stellar occultation

(Josh Colwell)

UVIS: Colwel et al 2007

Ring Occultation by alpha-Leonis, UVIS FUV

From J.Colwell et all, ICARUS, 2007

UVIS: Colwel et al 2007

Ring Occultation by alpha-Leonis, UVIS FUV

From J.Colwell et all, ICARUS, 2007

UVIS: Colwel et al 2007

At Turnaround:

* nearly azimuthal track
* small change in ring plane radius
-> drastic increase in radial resolution
1.5 m per 2 ms integration period
(HSP UVIS)
15 m diffraction limited

UVIS: Colwell et al 2007 FFT of alpha Leo profiles

-> more observations:
CASSINI Radio Science Subsystem (RSS)
=> 150-200m axisymmetric waves
are in the inner A ring
and abundant in the B ring
-> most likely interpretation: viscous overstability
-> full nonlinear evolution TBD: Complex Ginzburg Landau equation
-> can this process make larger structure of several km?

size distribution of ring particles

-are ring particles metastable agglomerates (Davis et al., 1984)?
-balance of coagulation and fragmentation?

Dynamic
Ephemeral
Bodies?
(Weidenschilling et al., see also Longaretti, 1989)

Fig. 2. Illustration of the dependence of the size distribution function $n(a)$ on parameter N. The suprameter part is obtained from inversion of the scattered signal, the submeter part is obtained from opacity measured at $3.6-$ and $13-\mathrm{cm}$ wavelengths and the assumption of a power-law model. Only the two parts for the case $N=3$ form a nearly continuous and smooth transition at radius $a=1 \mathrm{~m}$; we take this as the most likely form of the distribution.
(From: Zebker et al., 1985)

Voyager Radio Science

(zebker et al., 1985) :
-> power law:

cm < r $<$ meters

-> knee/size-cut-off:
r > meters

Fig. 2. Illustration of the dependence of the size distribution function $n(a)$ on parameter N. The suprameter part is obtained from inversion of the scattered signal, the submeter part is obtained from opacity measured at $3.6-$ and $13-\mathrm{cm}$ wavelengths and the assumption of a power-law model. Only the two parts for the case $N=3$ form a nearly continuous and smooth transition at radius $a=1 \mathrm{~m}$; we take this as the most likely form of the distribution.
(From: Zebker et al., 1985)

Voyager Radio Science

(zebker et al., 1985) :
-> power law:
cm < r < meters
-> knee/size-cut-off:
r > meters

stellar occ (28 Sgr)

 observed from earth(French \& Nicholson, 2000) ,

+ Cassini radio science
(Marouf et al., 2008,
Cuzzi et al., 2009) :
-> consistent results
-> kinetic model:
discrete model, ring-particles are clusters of primary, indestructible, identical, spheres of size r_{0}
-> kinetic model:
discrete model, ring-particles are clusters of primary, indestructible, identical, spheres of size r_{0}
-> evolution of cluster size distribution with sticking collisions (low speed) and disruptive collisions (high speed)
-> kinetic model:
discrete model, ring-particles are clusters of primary, indestructible, identical, spheres of size r_{0}
-> evolution of cluster size distribution with sticking collisions (low speed) and disruptive collisions (high speed)
-> analytical steady state solution: simplified model - clusters (when disrupted) decay completely into primary particles, simplified collision kernels
-> kinetic model:
discrete model, ring-particles are clusters of primary, indestructible, identical, spheres of size r_{0}
-> evolution of cluster size distribution with sticking collisions (low speed) and disruptive collisions (high speed)
-> analytical steady state solution: simplified model - clusters (when disrupted) decay completely into primary particles, simplified collision kernels
-> local model:
no self-gravity, no ring structure, no tidal force, Gaussian speed distribution

Boltzmann equation:

$\frac{\partial}{\partial t} f_{m}\left(\vec{v}_{m}, t\right)=I_{m}^{\text {agg }}+I_{m}^{\text {frag }}+I_{m}^{\text {reb }}+I_{m}^{\text {heat }}$
speed distribution, clusters of mass m

Boltzmann equation:

Boltzmann equation:

$\frac{\partial}{\partial t} f_{m}\left(\vec{v}_{m}, t\right)=\underbrace{\substack{\text { viscous } \\ \text { heating }}}_{I_{m}^{\text {agg }}+I_{m}^{\text {frag }}+I_{m}^{\text {reb }}+I_{m}^{\text {heat }}}$

Boltzmann equation:

$$
\frac{\partial}{\partial t} f_{m}\left(\vec{v}_{m}, t\right)=\underbrace{I_{m}^{a g g}+I_{m}^{f r a g}+I_{m}^{r e b}+I_{m}^{h e a t}}_{\substack{\text { collision } \\
\text { integrals }}} \begin{aligned}
& \text { fragmentation: } \\
& \text { heating } \\
& \text { disruptive collisions }
\end{aligned}
$$

assumption:
fragmentation and coagulation energies are independent of cluster size

n_{k} : concentration of clusters containing k primary particles
$K_{i j}$: collision kernel (from Boltzmann equation)
$K_{k j} n_{j}$: frequency of collisions of clusters of size k with clusters of size j
evolution equation for $k>1$:

$$
\frac{d n_{k}}{d t}=\frac{1}{2} \sum_{i+j=k} K_{i j} n_{i} n_{j}-(1+\lambda) n_{k} \sum_{j \geq 1} K_{k j} n_{j}
$$

evolution equation for $k>1$:

$$
\frac{d n_{k}}{d t}=\frac{1}{2} \sum_{i+j=k} K_{i j} n_{i} n_{j}-(1+\lambda) n_{k} \sum_{j \geq 1} K_{k j} n_{j}
$$

merging of clusters
(Smoluchowski)
evolution equation for $k>1$:

$$
\begin{aligned}
& \frac{d n_{k}}{d t}=\frac{1}{2} \sum_{i+j=k} K_{i j} n_{i} n_{j}-(1+\lambda) n_{k} \sum_{j \geq 1} K_{k j} n_{j} \\
& \text { ging of clusters } \\
& \text { noluchowski) }
\end{aligned}
$$

collisional decay of clusters into primary particles, $\lambda \ll 1$
evolution equation for $k>1$:

$$
\frac{d n_{k}}{d t}=\frac{1}{2} \sum_{i+j=k} K_{i j} n_{i} n_{j}-(1+\lambda) n_{k} \sum_{j \geq 1} K_{k j} n_{j}
$$

merging of clusters
(Smoluchowski)
collisional decay of clusters into primary particles, $\lambda \ll 1$
evolution equation for $k=1$:

$$
\begin{aligned}
\frac{d n_{1}}{d t} & =-2 n_{1} \sum_{j \geq 1} K_{1 j} n_{j} \\
& +\frac{\lambda}{2} \sum_{i, j \geq 2}(i+j) K_{i j} n_{i} n_{j}+\lambda n_{1} \sum_{j \geq 2} j K_{1 j} n_{j}
\end{aligned}
$$

Choice of Collision Kernel

(a) ballistic Kernel

$$
K_{i j}=\underbrace{\left(i^{1 / 3}+j^{1 / 3}\right.}_{\text {cross section }})^{2} \underbrace{\sqrt{\frac{i+j}{i j}}}_{\text {relative speed }}
$$

Choice of Collision Kernel
(a) ballistic Kernel

$$
K_{i j}=\underbrace{\left(i^{1 / 3}+j^{1 / 3}\right.}_{\text {cross section }})^{2} \underbrace{\sqrt{\frac{i+j}{i j}}}_{\text {relative speed }}
$$

(b) modified Kernel, better for rings

$$
K_{i j}=\left(i^{1 / 3}+j^{1 / 3}\right)^{2}
$$

Choice of Collision Kernel
(a) ballistic Kernel

$$
K_{i j}=\underbrace{\left(i^{1 / 3}+j^{1 / 3}\right.}_{\text {cross section }})^{2} \underbrace{\sqrt{\frac{i+j}{i j}}}_{\text {relative speed }}
$$

(b) modified Kernel, better for rings

$$
K_{i j}=\left(i^{1 / 3}+j^{1 / 3}\right)^{2}
$$

(c) general product Kernel

$$
K_{i j}=(i j)^{\mu}
$$

Choice of Collision Kernel
(a) ballistic Kernel

$$
K_{i j}=\underbrace{\left(i^{1 / 3}+j^{1 / 3}\right.}_{\text {cross section }})^{2} \underbrace{\sqrt{\frac{i+j}{i j}}}_{\text {relative speed }}
$$

(b) modified Kernel, better for rings

$$
K_{i j}=\left(i^{1 / 3}+j^{1 / 3}\right)^{2}
$$

(c) general product Kernel

$$
K_{i j}=(i j)^{\mu} \text { analytical solution }
$$

Choice of Collision Kernel
(a) ballistic Kernel

$$
K_{i j}=\underbrace{\left(i^{1 / 3}+j^{1 / 3}\right.}_{\text {cross section }})^{2} \underbrace{\sqrt{\frac{i+j}{i j}}}_{\text {relative speed }}
$$

(b) modified Kernel, better for rings

$$
K_{i j}=\left(i^{1 / 3}+j^{1 / 3}\right)^{2}
$$

(c) general product Kernel

$$
K_{i j}=(i j)^{\mu} \text { analytical solution }
$$

$$
\begin{aligned}
& \text { degree of homogeneity, } \kappa: \\
& K_{a i, a j}=a^{\kappa} K_{i, j}
\end{aligned}
$$

Choice of Collision Kernel
(a) ballistic Kernel

$$
K_{i j}=\underbrace{\left(i^{1 / 3}+j^{1 / 3}\right)^{2}}_{\text {cross section }} \underbrace{\sqrt{\frac{i+j}{i j}}}_{\text {relative speed }} \stackrel{\mu=1 / 12}{\Perp}
$$

(b) modified Kernel, better for rings

$$
K_{i j}=\left(i^{1 / 3}+j^{1 / 3}\right)^{2}
$$

(c) general product Kernel

$$
K_{i j}=(i j)^{\mu} \text { analytical solution }
$$

degree of homogeneity, κ : $K_{a i, a j}=a^{\kappa} K_{i, j}$

Choice of Collision Kernel

(a) ballistic Kernel

$$
K_{i j}=\left(i^{1 / 3}+j^{1 / 3}\right)^{2} \sqrt{\frac{i+j}{i j}}
$$

$$
\mu=1 / 12
$$

cross section relative speed
(b) modified Kernel, better for rings

$$
K_{i j}=\left(i^{1 / 3}+j^{1 / 3}\right)^{2}
$$

(c) general product Kernel

$$
K_{i j}=(i j)^{\mu} \text { analytical solution }
$$

degree of homogeneity, κ : $K_{a i, a j}=a^{\kappa} K_{i, j}$

Choice of Collision Kernel
(a) ballistic Kernel

$$
K_{i j}=\left(i^{1 / 3}+j^{1 / 3}\right)^{2} \sqrt{\frac{i+j}{i j}}
$$

cross section relative
equipartition: energies of random motion of different spize groups
(b) modified Kernel, better for rings

$$
K_{i j}=\left(i^{1 / 3}+j^{1 / 3}\right)^{2}
$$

(c) general product Kernel
all size

$$
K_{i j}=(i j)^{\mu} \text { analytical scgroups }
$$ have the same degree of homogeneity, dispersion $K_{a i, a j}=a^{\kappa} K_{i, j}$ velocity

(a) ballistic Kernel

$$
K_{i j}=\underbrace{\left(i^{1 / 3}+j^{1 / 3}\right)^{2} \sqrt{\frac{i+j}{i j}}}
$$ cross section

equipartition: energies of random motion of different size groups
(b) modified Kernel, better for rings

$$
K_{i j}=\left(i^{1 / 3}+j^{1 / 3}\right)^{2}
$$

(c) general product Kernel

$$
K_{i j}=(i j)^{\mu} \quad \text { analytical scgroups }
$$ have the same degree of homogeneity, dispersion $K_{a i, a j}=a^{\kappa} K_{i, j}$ velocity

Solution for general product Kernel $K_{i j}=(i j)^{\mu}$

$$
n_{k}=\frac{F(\lambda)}{2 \sqrt{\pi}} e^{-\lambda^{2} k / 4} k^{-3 / 2-\mu} \quad\left(1 \ll k<\lambda^{-2}\right)
$$

Solution for general product Kernel $K_{i j}=(i j)^{\mu}$

$$
\begin{array}{|lll}
n_{k}=\frac{F(\lambda)}{2 \sqrt{\pi}} e^{-\lambda^{2} k / 4} k^{-3 / 2-\mu} & \left(1 \ll k<\lambda^{-2}\right) \\
& & \text { low mass: power law }
\end{array}
$$

lhigh mass: exponential cut-off

Solution for general product

 Kernel $K_{i j}=(i j)^{\mu}$$$
\begin{array}{|lll}
\hline n_{k}=\frac{F(\lambda)}{2 \sqrt{\pi}} e^{-\lambda^{2} k / 4} k^{-3 / 2-\mu} & \left(1 \ll k<\lambda^{-2}\right) \\
& \text { low mass: power law }
\end{array}
$$

$$
\begin{aligned}
\text { lhigh mass: } & \text { exponential } \\
& \text { cut-off }
\end{aligned}
$$

Size distribution

$$
F(R) \propto R^{-q} e^{-\left(R / R_{c}\right)^{3}}, \quad q=5 / 2+3 \mu, \quad R_{c}^{3}=4 r_{0}^{3} / \lambda^{2}
$$

Solution for general product Kernel $K_{i j}=(i j)^{\mu}$

$$
\begin{aligned}
& n_{k}=\frac{F(\lambda)}{2 \sqrt{\pi}} e^{-\lambda^{2} k / 4} k^{-3 / 2-\mu} \quad\left(1 \ll k<\lambda^{-2}\right) \\
& \text { low mass: power law }
\end{aligned}
$$

$$
\begin{aligned}
\text { lhigh mass: } & \text { exponential } \\
& \text { cut-off }
\end{aligned}
$$

Size distribution

$$
\begin{aligned}
& \underbrace{F(R) \propto R^{-q} e^{-\left(R / R_{c}\right)^{3}}, \quad q=5 / 2+3 \mu, \quad R_{c}^{3}=4 r_{0}^{3} / \lambda^{2}} \begin{aligned}
1 / 12 \leq \mu \leq 1 / 3
\end{aligned} \quad \Rightarrow \quad 2.75 \leq q \leq 3.5
\end{aligned}
$$

wrap up

wrap up

-> Keplerian motion + dissipation: rich dynamics
-> Keplerian motion + d dsipation: rich dynamics
-> abundant micro-struct overstability, self-gı wity wakes

wrap up

-> Keplerian motion + dissipation: rich dynamics
-> abundant micro-struct overstability, self-gı ity wakes
-> significant dif ences in transport properties comp. to free granular systems

wrap up

-> Keplerian motion + dissipation: rich dynamics
-> abundant micro-struct overstability, self-gı ity wakes
-> significant dif ences in transport properties compe to free granular systems
-> importance of self-gravity

wrap up

-> Keplerian motion + dissipation: rich dynamics
-> abundant micro-struct overstability, self-gi pity wakes
-> significant dif ences in transport properties comp to free granular systems
-> importance of self-gravity
-> coagulation + fragmentatio might be important to shape the size distribution

wrap up

-> Keplerian motion + dissipation: rich dynamics
-> abundant micro-sfruct overstability, Self-gı
$->$ significant f. pr res ar to free granular
-> importance of self-gravity
-> coagulation + fragmentatio might be important to shape the size distribution

spare slides

solar system ring map

RSS: Thompson et al 2007

In the A ring

150m-200m radial wave

RSS: Thompson et al 2007

In the B ring

150m-200m radial waves

Global budget of energy and angular momentum

Some historical remarks

Some historical remarks

Keck observations of Uranus ring plane crossing

(De Pater et al, Science, 2007)

Edge-On:
Brightening of dust rings

Fraternité

ring creation? ring re-creation?

© W.K Hartmann
(Bill Hartman)

(Bill Hartman)

(Bill Hartman)

(Bill Hartman)

propeller moon

(Bill Hartman)

propeller moon

comparison of numerical solutions for various kernels

comparison of numerical solutions for various kernels

comparison of numerical solutions for various kernels

fragmentation into clusters with power law size distribution
fragmentation into clusters with power law size distribution
look at: $k \longrightarrow n_{j}^{\prime} \propto j^{-\alpha} \quad\left(p(r) \propto r^{-\beta}, \quad \beta=3 \alpha-2\right)$

fragmentation into clusters with power law size distribution

look at: $k \longrightarrow n_{j}^{\prime} \propto j^{-\alpha} \quad\left(p(r) \propto r^{-\beta}, \quad \beta=3 \alpha-2\right)$
$\operatorname{up}_{\text {(monomer }}$ to now: $\quad k \longrightarrow \underbrace{1+1+\cdots+1}_{k \text { times }}$ decomposition)

fragmentation into clusters

 with power law size distributionlook at: $k \longrightarrow n_{j}^{\prime} \propto j^{-\alpha} \quad\left(p(r) \propto r^{-\beta}, \quad \beta=3 \alpha-2\right)$

fragmentation into clusters with power law size distribution

look at: $k \longrightarrow n_{j}^{\prime} \propto j^{-\alpha} \quad\left(p(r) \propto r^{-\beta}, \quad \beta=3 \alpha-2\right)$

fragmentation into clusters with power law size distribution

look at: $k \longrightarrow n_{j}^{\prime} \propto j^{-\alpha} \quad\left(p(r) \propto r^{-\beta}, \quad \beta=3 \alpha-2\right)$

local changes in the

 size distribution, in response to perturbations?
Response to perturbations: local changes in the size distribution?

'Halos' of density waves in B: diffusion of small particles released in perturbed regions?

reduced amplitude of brightness asymmetry in outer A ring.
-> No or weak self-gravity wakes?
-> Or: Numerous resonances with moons perturb the ring matter and locally change the size distribution, change wake properties or reduce wake contrast?

propellers

(Tiscareno et al., 2006)

propellers

(Tiscareno et al., 2006)

NUMBER DENSITY

IF IMAGE

FAST IMPACTS + + SOI4 FIT)

IVF IMAGE with DEBRIS

propellers

(Tiscareno et al., 2006)

H. Salo
(see Sremcevic et al., 2007)

Summary

* new kinetic model:
coagulation <-> fragmentation all ring particles are transient clusters
* small frequency of sticky/disruptive collisions:
continuous size-distribution establishes with power-law part and exponential
cut-off
* strong simplifications/neglects:
so far we find that result
is generic property of
coagulation/fragmentation kinetics

Instabilities

Transport instabilities

From Shan\&Goertz, 1990

Instabilities

Transport instabilities

Surface undulations on the order of characteristic hopping distances will amplify

Goertz \& Morfill, I988

Instabilities

Transport instabilities

Ballistic

Transport Instability
-> radial transport of mass by ejecta
-> typical scales ~ 50 - 100 km
-> ramps interior to A and B rings
-> variations in ring density/brightness
-> works best at intermediate optical depth
Ip83,84
Lissauer84,
Durisen,Durisen\&Cuzzi

Electromagnetic
Transport Instability
-> small (micron-sized) ejecta get charged in/after impact
-> get accelareted/decelarated by planetary magnetic field: momentum transfer to rings
-> typical scales ~ 50 - 100 km

Goertz\&Morfill88, Shan\&Goertz9|

