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C(00) = - ZFiod + Srer (s
where § is the nondimensional shear rate,
Qryd
S=—, (55)
veV To(r)
and
C,=3asin2y, (56)
* — ok
c,= 61% tr(A), 57)
_ 571 = 28)(5 - 4p)
C3 - (2 _ 5*)Mzz ’ (58)
with
Sa
cos 2x = m, (59)
. VSe* . Se*
= B= 12 (60)
and

4
tr(A) = %’(70 +7a? + 2182 - 2a28 + %) (61)

Upon integrating (54) over the ring thickness, we obtain

_G1
S=55 (62)
where
- -1
J= fo * FO dg ( jo F2@3 d§> (63)

With (63), we may employ Eq. (36) to solve for S in terms
of J and to write (54) as

"2
@ = — 2(((3) + BIF(JFO — 1), (64)
where
__ €
= — C.Co (65)
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FIG.1. Dimensionless temperature distribution © versus nondimen-
sional axial distance ¢ for different values of &*. As &* — (.3688,
Q- 1.

is positive for all values of &*. The introduction of the -
integral parameter J permits us to easil y impose the condi-
tion that the heat flux vanishes at large £ and also removes
the quantity S from the equations. This is an advantage
because J remains finite for all values of €*, while S in-
creases without bound as e* approaches the value at
which sin 2x = 0. In the course of solving for the density
and temperature profiles, J is determined iteratively.
The boundary conditions at the midplane are

00) =1, ©() =0, and F(0) = 1. (66)

Equations (53) and (64) have been solved subject to the
boundary conditions (66) using a Runge—Kutta method
beginning with an initial guess for J. Once the profile is
determined, J is recalculated using (63) and the integra-
tions of (53) and (64) are repeated. This procedure requires
only a few iterations to converge.

Typical profiles for ® and F are shown in Figs. 1 and
2 for different values of &*. In all cases, the temperature
increases with distance from the midplane, reaching a
constant value as ¢ becomes very large. The largest such
temperature occurs in the mathematical, but not physical,
limit of perfectly elastic collisions; it is about 15% larger
than the temperature on the midplane. For ¢* = 0.3688,
the temperature is constant throughout. From Fig. 2 it
can be seen that the density profiles do not vary apprecia-
bly for different e* and are close to the isothermal profile:

|
F*=exp[— ¢ ]

TIRT) (67
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FIG.2. Dimensionless density distribution F versus nondimensional
axial distance ¢ for different values of £*. The isothermal density profile
corresponds to e* = 0.3688.

Finally, Fig. 3 shows a detailed energy balance for
e* = 0.1, with production (P), dissipation (D), and con-
duction (C) defined by

P =BJF®? D= BJ?F?@3, and
C = 00" + 20(0")2. (68)
It is seen that production as well as dissipation of kinetic
energy is highest at the midplane. The dissipation of en-
ergy near the central plane dominates the production,
whereas for large axial distances more energy is generated
than can be dissipated; therefore, heat is conducted from
large axial distances to the central plane.

FIG. 3. Energy balance with production (P), dissipation (D), and
conduction (C) for e* = 0.1 versus nondimensional axial distance £.
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Of course, the variations of the volume fraction and -
the granular temperature are determined only relative to
their values on the midplane of the ring. In order to deter-
mine their midplane values, additional information is re-
quired. In the next section, we introduce additional infor-
mation and solve for these midplane values and the
particle diameter.

SATURN'’S A-RING

We now give rough estimates of the granular tempera-
ture and the solid volume fraction on the midplane and
the particle diameter in Saturn’s A-ring. As a result of
the 6/7 Lindblad resonance, there is a torque T/, exerted
at the outer edge of the A-ring. We first equate this torque
to the moment of the integrated shear stress,

Ten = 4R} [ oK, dz, (69)
where R, is the outer radius of the A-ring, R, = 1.37 x
10® m. We define the surface mass density 3 by
= * 7
2=2["pde, (70)
and use the fact that £ = 300 kg m~2 and Te/7/% = 1.13
X 10" m* sec=2 (Cuzzi et al., 1984).

Then, upon writing K,, = T a sin 2x and using the

variables of the previous section in (69) and (70), we have

that the midplane temperature and the midplane volume
fraction are given by

T, = —ton_ 1 j”ng(ij@)ng)_' (71)
O 273R2 wsin 2y Jo 0

and

30 = )"
= Fde) . 72
0 20,VT, (fo ¢ L&

Recalling the definition (55), the particle diameter is given
in terms of these by

_ Sy VT,

d a

(73)

where § is given in terms of J by (62). When these quanti-
ties are evaluated on the numerical solutions for F and
®, their values are determined as functions of &*,

It is, perhaps, more convenient to have these quantities
given as functions of the optical depth 7 defined by

\
=3, 4,3 —3S% "
7=dj0 ydz-SjOng_3C21jo Fd¢  (79)
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FIG. 4. The quantities VT, (m sec™"), vy, d(m), and &* versus r.

Because (74) relates 7 and &* on solutions, this is easy to
do. The graphs of Ty, v,, d, and &* versus t.are shown
in Fig. 4.

The relationship between &* and 7 that results is essen-
tially identical to the relationships between £* and 7 deter-
mined by Goldreich and Tremaine (1978) and Araki (1991).
That is, the variation of temperature normal to the plane
of the ring does not have a discernible effect on the rela-
tionship between the optical depth and the coefficient of
restitution. We can take advantage of this lack of sensitiv-
ity to the variation of the granular temperature normal to
the ring to obtain simple approximate forms of (71)=(73)
that are more amenable to physical interpretation.

If we take the temperature to be uniform and use the
isothermal density distribution (67) in the integrals (71)
and (72), the relation corresponding to (71) is clearly a
determination of the midplane value of K,, that has been
solved for T,:

Ty 1

To= 23R 2 asin2y’ (75
The quantity « sin 2y is the kinematic viscosity introduced
by Goldreich and Tremaine (1978), normalized by 2T,/
3Q2. As they show, this normalized kinematic Viscosity
first increases with 7 and then decreases. The minimum
in the curve of T, versus 7 in Fig. 4 is a consequence of
this. In the same limit, (72) becomes a relation between
the midplane value of K, and v,:

~

_ 30 1
p V2 VT(1 - 28)

Because 8 is a monotone increasing function of &*, the

Yy

(76)
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maximum in the curve of v, versus 7 is inherited from the
minimum in the curve of T, versus 7. The particle diameter
then follows from (73) with J = V2, and the optical depth
is

37 %a sin 2y

T T 262 — &) r(A)

V1 - 28. D)

Upon employing (59)-(61), these may be expressed in
terms of &* alone.

It is interesting that the introduction of so modest an
amount of information permits such explicit predictions
to be made of the midplane volume fraction, the midplane
granular temperature, and the particle diameter in the
context of this simple model of the ring.
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