Still water dead zone & collimated ejecta in granular jet impact

Wendy W. Zhang Nicholas Guttenberg, Herve Turlier, Jake Ellowitz, Sidney R. Nagel

Physics Department & James Franck Institute University of Chicago Nonequilibrium Dynamics in Astrophysics and Material Science Kyoto, Japan 2011

Introduction

Dense granular flow is complex heterogeneous flow avalanches

Jaeger, Nagel mustard seeds heterogeneous stress field force networks imposed shear

> Zhang, Majmudar & Behringer photoelastic discs

Introduction

impact **>** *scattering* **>** *structure*

light scattering from infrared to x-ray dense molecular beams in ultracold chemistry relativistic particle beams in collider physics ...

Preview

Impact of dense granular jet

- Collimated (liquid-like) ejecta & interior dead zone
- Different interior structure 🗲 same ejecta
- Liquid-like response perfect fluid flow
 dissipationless flow

dissipation = frictional fluid continuum flow remains non-Newtonian in limit towards dissipationless perfect fluid flow

Outline

- 1. Introduction
- 2. Background
- 3. Experiments & simulation
- 4. Model
- 5. Discussion & Conclusion

Background: granular jet impact → collimated (liquid-like) ejecta

non-cohesive glass beads

Cheng et al. PRL 07

loosely packed jet→ shower of recoils

dense jet **>** *ejecta collimated hollow conical sheet*

Ejecta sheet angle changes with D_{Tar}/D_{Jet}

reducing D_{Tar}/D_{Jet}

Granular ejecta angle ψ₀ agree numerically with values for water jet → liquid-like ejecta

Context

• Elliptic flow: collimated ejecta from collision of gold ions at relativistic speeds → Liquid quark-gluon phase with Newtonian viscosity?

• Formation of planetismals from dust aggregates via collisions

Pozkanser, Voloshin, Ritter... 2008 APS Bonner prize talk Romatschke & Romatschke PRL 2007 Teiser & Wurm, Mon. Not. R. Astron. Soc. 2009

Outline

- 1. Introduction
- 2. Background
- 3. Experiments & simulation

Experiment → jet interior is not liquid-like

 $|\mathbf{u}|/U_0$

1

0.5

0

Look at impact of half a jet pressed against glass

side-view of jet interior

Experiment \rightarrow dead zone is cold

liquid-like ejecta D interior structure

Simulation

red = high speed blue = zero speed rigid grains inelastic collisions friction between grains

sticky target grains immobile after colliding with target

Simulation reproduces experiment

jet _____ *collimated ejecta dead zone*

red = high speed
blue = zero speed

coeff. of restitution and/or friction between grains \rightarrow weak variation Guttenberg (2011)

Different interior → Same ejecta

ejecta angle changes from
45° (with dead zone)
→ 40° (without deadzone)

ejecta remains collimated

Outline

- 1. Introduction
- 2. Background
- 3. Experiments & simulation

force force force force force force force force Same ψ₀ in granular & water jet impact → liquid phase in granular jet? No

Ejecta ≠ scattering pattern (dilute regime)

Dense jet impact is different

To see relevant limit, model as continuum insted of simulating as hard spheres

 $\psi_0 \approx 1 - (A - B)(D_{Tar} / D_{Jet})^2$ *The reaction drag*

Frictionless target simulation results Continuum model of granular jet impact

- 1. Mass conservation
- 2. Energy conservation
- 3. Momentum conservation

Not assuming hydrodynamic limit obtains Phenomenological

Frictionless target simulation results Continuum model of granular jet impact

1. Mass conservation

Frictionless target simulation results -> continuum model of granular jet impact 3. Momentum conservation density × acceleration = - pressure gradient + dissipation $\nabla \cdot (shear \ stress \ tensor)$ shear stress = μ pressure $e_{local shear direction}$ phenomenological friction coefficient $\rho\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right) \mathbf{u} + \nabla p = \nabla \cdot \boldsymbol{\mu} \frac{P}{|\dot{\gamma}^d|} \dot{\gamma}^d_{ij}$ $1/2\left(\partial_i v_i + \partial_j v_i\right) - 1/2 \dot{\gamma}_{kk} \delta_{ii}$

Frictionless target simulation results Continuum model of granular jet impact

- 1. Mass conservation
- 2. Energy conservation
- 3. Momentum conservation

$$\rho\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right) \mathbf{u} + \nabla p = \nabla \cdot \mathbf{\mu} \frac{P}{|\dot{\gamma}^d|} \dot{\gamma}^d_{ij}$$

 $\nabla \cdot \mathbf{u} = 0$

 $T_G = \theta$

Incompressible frictional fluid

Boundary conditions:

At unknown jet surface, normal stress and tangential stress both 0

At target, tangential and normal velocity both 0

Frictionless target simulation results -> continuum model of granular jet impact

- **1.** Mass conservation
- 2. Energy conservation
- 3. Momentum conservation

$$\nabla \cdot \mathbf{u} = 0$$

 $T_G = U$

$$\rho\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right) \mathbf{u} + \nabla p = \nabla \cdot \boldsymbol{\mu} \frac{P}{|\dot{\gamma}^d|} \dot{\gamma}^d_{ij}$$

hard sphere simulation

Incompressible frictional fluid Choose µ to fit simulated ψ_0 quantitatively reproduces u(x) & p(x)in hard sphere simulation

Frictionless target simulation results Continuum model of granular jet impact

- 1. Mass conservation
- 2. Energy conservation
- 3. Momentum conservation

$$\nabla \cdot \mathbf{u} = 0$$

 $T_{C} = \theta$

$$\rho \left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right) \mathbf{u} + \nabla p = \nabla \cdot \mathbf{u} + \frac{\partial}{|\gamma^d|} \dot{\gamma}^d_{ij}$$

Dissipationless perfect fluid flow emerges when we take the limit $\mu \rightarrow 0$ $\rho\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right) \mathbf{u} + \nabla p = 0$

Continuous approach instead of abrupt change

Deadzone shrinks continuously to 0 as $\mu \rightarrow 0$

Ejecta angle dominated by contribution from reaction force A as $\mu \rightarrow 0$ 0.50.4 $\psi_0 \approx 1 - \left(A - B\right) \left(D_{Tar} / D_{Jet}\right)_{0.3}^2$ reaction drag 0.2force force 0.1 $\Psi_0/180^{\circ}$ 0 0.20.10.30.40.50.6 0.70 μ

Outline

- 1. Introduction
- 2. Background
- 3. Experiments & simulation

 $\psi_{0} \approx 1 - (A - B)(D_{Tar}/D_{Jet})^{2}$ π reaction
drag
force
force

4. Model \Rightarrow alternative interpretation Same ψ_0 because small drag but same reaction force (B << A, same A)

Different dissipation mechanisms Same limit of perfect fluid flow as dissipation $\rightarrow 0$

Direct demonstration that perfect fluid flow is relevant for hard-sphere jet impact?

Quantitative check

Pressure contours

local pressure / pressure at target center

solid line = granular simulation dashed line = perfect fluid solution

Quantitative agreement

Discussion

• Elliptic flow at RHIC Small deviation from perfect fluid flow interpretted as very low Newtonian viscosity -- assumes hydrodynamics

Granular jet impact small deviation ≠ low Newtonian viscosity approaches perfect fluid flow as frictional fluid (always far-from-equilibrium)

Discussion

• Formation of planetismals from dust aggregates collisions

Teiser & Wurm Mon. Not. R. Astron. Soc. 2009

formation of dead zone ejecta collimated within 1[°] during initial impact

Model as frictional fluid impact?

Conclusion

Impact of dense granular jet

- Collimated (liquid-like) ejecta & interior dead zone
- Different interior structure 🗲 same ejecta
- Liquid-like response ← perfect fluid flow dissipation = frictional fluid continuum flow remains non-Newtonian in limit towards dissipationless perfect fluid flow

Acknowledgements: Xiang Cheng, Eric Brown, Heinrich M. Jaeger

Support: NSF-MRSEC, Keck Foundation, NSF-CBET

Thank you