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Introduction
Dense granular flow is complex

heterogeneous flow
avalanches

Jaeger, Nagel
mustard seeds

heterogeneous stress field
force networks

Zhang, Majmudar & Behringer
photoelastic discs

imposed
shear



Introduction
impact  scattering structure

Rutherford’s goldfoil 
scattering experiment

wikipedia

light scattering from infrared to x-ray
dense molecular beams in ultracold chemistry
relativistic particle beams in collider physics ...
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Impact of dense granular jet 
• Collimated (liquid-like) ejecta & interior dead zone
• Different interior structure  same ejecta 
• Liquid-like response  perfect fluid flow

      dissipationless flow

dissipation = frictional fluid 
continuum flow remains non-Newtonian in

limit towards dissipationless perfect fluid flow

Preview
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1. Introduction
2. Background
3. Experiments & simulation
4. Model
5.  Discussion & Conclusion

Outline



jet

loosely packed jet
 shower of recoils

dense jet  ejecta collimated
hollow conical sheet

Cheng et al. PRL 07

Background: granular jet impact
collimated (liquid-like) ejecta
non-cohesive particles

jet

target

target holder

non-cohesive glass beads



Ejecta sheet angle changes with DTar /DJet

reducing DTar /DJet

Granular ejecta angle ψ0
agree numerically 
with values for water jet
 liquid-like ejecta

 water
 glass
    beads  
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Did impact create a liquid phase?

! 

"0 =
1# A(DTar /DJet )

2

1# B(DTar /DJet )
2

dimensionless 
reaction force

dimensionless drag force

Momentum balance

When DTar << DJet 

! 

"0 #1$ A $ B( )(DTar /DJet )
2

 water
 glass
    beads  

Same ψ0  same A-B
But individual values of A and B may differ



Context

Pozkanser, Voloshin, Ritter... 2008 APS Bonner prize talk
Romatschke & Romatschke PRL 2007

Teiser & Wurm, Mon. Not. R. Astron. Soc. 2009

• Elliptic flow:  collimated ejecta from collision of
gold ions at relativistic speeds Liquid quark-
gluon phase with Newtonian viscosity?

• Formation of planetismals from dust aggregates
via collisions
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Outline
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Experiment  jet interior is not liquid-like
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Look at impact of half a jet
pressed against glass 

side-view of jet interior
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Experiment  dead zone is cold

transparent target

r /DJet
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reaction
force

drag
force

liquid-like
ejecta

interior
structure

?



Simulation

red = high speed 
blue = zero speed

jet

rigid grains
inelastic collisions
friction between grains

sticky target
grains immobile after
colliding with target



Simulation reproduces experiment

normalized
velocity 
contours

agree
quantitatively 

red = high speed 
blue = zero speed

jet collimated ejecta
dead zone



No dead zone at frictionless target
jet

coeff. of restitution and/or friction between grains  weak variation  
Guttenberg (2011)



P(ψ−ψ0)

ψ−ψ0
0

0.004

0.01

0 5-5

 no 
   dead
   zone
 dead
   zone

0.008
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Different interior Same ejecta

ejecta angle changes from
45° (with dead zone) 
 40° (without deadzone)

ejecta remains collimated
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1. Introduction
2. Background
3. Experiments & simulation

Same ψ0  in granular & water jet impact
                   liquid phase in granular jet?  No

Ejecta ≠ scattering pattern (dilute regime)

Outline

! 

"0 #1$ A $ B( )(DTar /DJet )
2

reaction
force

drag
force

Dense jet impact is different
 To see relevant limit, model as continuum
      insted of simulating as hard spheres



Frictionless target simulation results
 continuum model of granular jet impact
1. Mass conservation
2. Energy conservation
3. Momentum conservation

Not assuming hydrodynamic limit obtains
Phenomenological



Frictionless target simulation results
 continuum model of granular jet impact
1. Mass conservation

density

velocity field



incompressible flow



Frictionless target simulation results
 continuum model of granular jet impact
2. Energy conservation
granular temperature

TG = 0 flow



Frictionless target simulation results
 continuum model of granular jet impact
3. Momentum conservation

density × acceleration =  - pressure gradient + dissipation 

(shear stress tensor)

shear stress = µ pressure elocal shear direction 

phenomenological friction coefficient

µ



Frictionless target simulation results
 continuum model of granular jet impact
1. Mass conservation
2. Energy conservation
3. Momentum conservation

Incompressible frictional fluid

TG = 0

µ

Boundary conditions:
At unknown jet surface, normal stress and tangential
stress both 0
At target, tangential and normal velocity both 0 



Frictionless target simulation results
 continuum model of granular jet impact
1. Mass conservation
2. Energy conservation
3. Momentum conservation TG = 0

µ

Choose µ to fit 
simulated ψ0
quantitatively 
reproduces u(x) & p(x)
in hard sphere 
simulation

Incompressible frictional fluid
hard sphere 
simulation



Frictionless target simulation results
 continuum model of granular jet impact
1. Mass conservation
2. Energy conservation
3. Momentum conservation

Dissipationless perfect fluid flow emerges
when we take the limit µ  0

TG = 0

µ

Continuous approach instead of abrupt change



HDZ

DTar

HDZ

µ

Deadzone shrinks continuously to 0 as µ  0

✖



µ
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"0 #1$ A $ B( )(DTar /DJet )
2

reaction
force

drag
force

Ejecta angle dominated by
contribution from 
reaction force A as µ  0
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1. Introduction
2. Background
3. Experiments & simulation

4. Model  alternative interpretation
    Same ψ0 because small drag but same reaction force

                      (B << A, same A)

    Different dissipation mechanisms
    Same limit of perfect fluid flow as dissipation  0

   Direct demonstration that perfect fluid flow is relevant
for hard-sphere jet impact?

Outline
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reaction
force

drag
force



Quantitative check

exact solution
2D

perfect fluid flow
zero surface tension

granular simulation
2D

inelastic / friction
non-cohesive

direct comparison



Pressure contours
local pressure / pressure at target center

Quantitative agreement

solid line = granular simulation
dashed line = perfect fluid solution



Discussion
• Elliptic flow at RHIC

Small deviation from perfect fluid flow
interpretted as very low Newtonian viscosity

 -- assumes hydrodynamics

Granular jet impact
small deviation ≠ low Newtonian viscosity
approaches perfect fluid flow as frictional

fluid (always far-from-equilibrium)



formation of dead zone
during initial impact

Discussion

Teiser & Wurm
Mon. Not. R. Astron. Soc. 2009

• Formation of planetismals from dust aggregates
collisions

ejecta collimated within 1°

40 m/s

Model as frictional fluid impact?
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Conclusion
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Impact of dense granular jet 
• Collimated (liquid-like) ejecta & interior dead zone
• Different interior structure  same ejecta 
• Liquid-like response  perfect fluid flow

dissipation = frictional fluid 
continuum flow remains non-Newtonian in

limit towards dissipationless perfect fluid flow


