Self-Consistent MHD Modeling of Solar Wind

Takeru Suzuki

Dept.of Physics, Kyoto University

Collaborator : Shu-ichiro Inutsuka

Outline

(Brief) Introduction Our Works

• Simulations of Solar Wind Driven by Nonlinear Low-freq. Alfven Waves

Suzuki & Inutsuka 2005, ApJL, 632, L49

First Dynamical Simulation which connects photospheric B-field and Interplanetary Region (Solar Wind)

Disappearance of Solar Winds (= Failed SW)

Fast/Slow Solar Winds

Suzuki & Inutsuka 2005, submitted to JGR (astro-ph/0511006)

Observational Test by Solar-B

Grab an evidence of the nonlinear dissipation of Alfven Waves
 Photospheric dv, B <=> Coronal Density and Temperature / SW Speed
 SOT <=> EIS/XRT

SW from Coronal Holes

We mainly focus on Solar Winds from coronal holes Polar Coronal Holes

Mid- to Low-Latitude Coronal Holes

Just after the launch (Solar Minimum) of Solar-B, the surface is largely covered by Coronal Holes

Fast/Slow Solar Wind

During Solar Minimum

Density ~7 cm-3 ~3 cm-3 Origin Low-Lat.Holes(??) Polar Holes How does the Solar atmosphere react to injection of the (Poynting) energy from the surface in the open coronal holes?

Corona formed ?

Transonic High-Speed Wind Accelerated ?

by dissipation of (Poynting) energy.

Wave Heating in Open Regions

Waves : Alfven Wave is promising

travel long distance to heat outer (SW) as well as inner (Corona) regions

Reconnections : Probably Important in Closed Region

Tsuneta et al.1992

• may Generate Waves at Higher Altitude

Alfven Waves

2 Types

High-freq (ion-cyclotron; 10^4Hz) waves Heating of Heavy Ions (Large m/q) Kohl et al.1998; Cranmer et al.1999 Difficult to heat P & e

•No sufficient Power

Heavy ions (lower-resonant freq.) absorb energy before protons

Cranmer 2000

Low-Freq waves(<0.1Hz) (This work)</p>

Mathaeus et al.1999; Oughton et al.2001; Ofman 2004

• Probably, More Power (e.g. 5 min. Oscillation)

Waves in Solar atmosphere

Key : Nonlinearity

Upward propagation with preserving energy flux $\rho \, \delta v_{\perp}^2 v_{\rm A} = \text{const.} \Rightarrow \delta v_{\perp} \Uparrow \Rightarrow \delta v_{\perp} / v_{\rm A} > 1$ (Non-Linear)

(Note) Wave action, instead of energy flux, is an adiabatic constant in moving media

Previous Works

To Study various non-linear wave processes, Time-dependent Simulation : Straightforward

 Analytic/Steady-state Modeling sometimes needs too much Simplification However, a lot of Difficulties even in simulations

Huge Density Contrast : > 15 orders of mag.

• Previous simulations : Separate Regions

Outgoing boundary condition at Outer Boundary

Model	Chromos.	Corona	Dynamical	Dim.	Multi-fluid	Heating
Cranmer & van	Yes	Yes	No	(2D)	No	Wave(Model)
Ballegooijen (2005)						
Ofman(2004)	No	Yes	Yes	$2.5\mathrm{D}$	Yes	Function/Wave
Lie-Svendsen et $al.(2001)$	Yes/No	Yes	Yes	1D	Yes	Function
Bogdan et al. (2003)	Yes	No	Yes	2D	No Need	Wave(Auto)
This Work	Yes	Yes	Yes	1D	No	Wave(Auto)

No one has successfully done dynamical wave simulation from photosphere to >a few Rsun even in 1D

Chromosphere/Corona/SW

Simulation

- Region : Photosphere ~ 64 Rsun (0.3AU)
- Transverse(Alfven) fluctuations from the Photosphere
 - Appropriate dv (~1km/s), spectrum(1/f; 20sec 30min)
 - (How about wave generation at higher altitude ?)
- Outgoing Boundary Condition
- ID ; SuperRadial expansion of Flux tube (mimic dipole B)
- Ideal MHD with radiative cooling & thermal conduction

Characters of our Simulation

Advantage

- Broadest Region with respect to density contrast
- Waves/Heating/Cooling : Automatic(Waves of P>20s)
 - •No Heating Function
- Minimal Parameters
 - Photospheric Perturbation
 - Super-radial flux tube (mimic dipole B-field)

Disadvantage

1-fluid ideal MHD

- Plasma Heating : only by MHD shock; No Collisionless processes
- Actually, observed ion/electron T are different.

1D

Wave Propagation : Restricted to B-direction(B//k)

(In spite of 1D 1-fluid MHD)

First Simulation which directly connects Photos. & SW

Result of Fast Wind (Fiducial Case)

Observations

•(r<6Rsun) : SoHO(CDS/UVCS/SUMER/LASCO)</p>

•(r>8Rsun) : Inter-Planetary Scintillation (Nagoya-STE;EISCAT)

Interpretation of Result

Forward Simulation shows that corona and (fast) solar wind is Natural Outcome of the fluctuations of B-fields at the photosphere.

Important Results

- (Nonlinear) Dissipation of Alfven Waves (discuss later)
- Transonic Wind : Stable
- Not Thermal-driven but Wave-driven Wind
 - •Wave-Pressure > Gas-Pressure
- Chromosphere(10^4K)<= Sharp TR =>Corona(10^6K)
 - Thermal Instability(Rad.Cooling) & Stabilization by Conduction
- Outflow Velocity
 - •1.014Rsun(z=10Mm) : up to 10km/s (mixed with waves)
 - •1.14Rsun(z=100Mm) : 50-100km/s (c.f. Tu et al.2005)
 - •2.5Rsun (~ Sonic Point) : ~150km/s(No difficulty at sonic point.)
 - •10Rsun : 500-800km/s (Acceleration : r<10Rsun)</p>

Time-Distance diagram (contour)

Outgoing Slow (sound) Waves in rho & v_r

Wave Dissipation

Outgoing Alfven Waves Remains at 0.3AU

In Chromosphere & TR

Outgoing Alfven : reflected downward by rapid variation of Alfven speed. (due to stratification) ~15% of initial energy transmits into corona.

Moore 1991

c.f. Bogdan et al.2003; Cranmer & van Ballegooijen 2005

But the transmitted flux (5x10^5 erg/cm^2/s) is sufficient for the coronal hole heating.

Example (Wave Reflection)

In Corona & Solar Wind

A key process in dissipation of Alfven waves is excitation of MHD slow waves.

(Kudoh & Shibata'99; Moriyasu et al.'04)

Coronal Heating / Wind Acceleration

Most Dominant Process in Dissipation of Outgoing Alfven Waves

Generation of MHD Slow (Sound) Waves

 Variation of magnetic pressure, dB_perp, of Alfvenic fluctuations excite longitudinal motions.

Slow Waves => (Steepen) => Slow Shocks

Slow shock converts both magnetic and kinetic energy to heat.

Energy & Momentum of Outgoing Alfven Wave

=> Slow Waves => Slow Shocks => Plasma

(Coronal Heating & Solar Wind Acceleration)

• Slow Waves are observed (Ofman, Nakariakov & Deforest 1999; Sakurai et al.2002)

Density fluctuations(slow-mode) become Mirrors to reflect Alfven waves. (3-wave interaction; Goldstein 1978);

Another dissipation mechanism (less dominant) Fast Shock by steepening of Alfven Wave (linear pol.)

Exmp.(Compressive Mode Generation)

Limitations of Our Simulations

Treatments of Chromosphere : Simplified

• Empirical radiative loss (No rad. transfer) c.f. Carlsson & Stein(2002)

1D & MHD Approximation?

Multi-dimensional effects

Turbulent cascade : Transverse Direction

Goldreich & Sridhar 1995; Matthaeus et al 1999; Oughton et al.2001

- Phase Mixing Heyvaerts & Priest 1983; Nakariakov et al.1998
- •Refraction (angle of B & k changes) : Fast mode

Bogdan et al.2003

Interactions between field lines => Nano-Flares (Katsukawa & Tsuneta 2001);

Wave Generation in the corona

Axford & Mckenzie 1997; Miyagoshi et al.2005

Kinetic/Collisionless effects

• Collisionless (Landau & Transit-Time) damping for fast/slow modes?

- Ioncyclotron Resonance (left-handed Alfven)?
- Conductive flux in collisionless plasma ?
- Electron/Ion T's are different

We need to study these issues via Local Simulations

Amplitude

• Alfvén Wave Nonlinearity, $\frac{\langle \delta v_{A,+} \rangle}{v_A} \stackrel{<}{\sim} 0.3$ More or Less Constant in Corona/SW

Constancy of the nonlinearly must be more or less robust even if other nonlinear processes operate.

Summary of Fiducial Case

Results:

- Forward' simulation of nonlinear Alfven Waves naturally explains the observed corona and fast wind.
- Dissipation of Outgoing Alfven waves via Nonlinear Processes
 - > Slow waves => Slow shocks
 - Incoming Alfven => wave-wave interaction
 - Nonlinearity dv/V_A < 0.3 (more or less constant)
 - (Caution)Our simulation has several limitations.

From Next Page:

- Photosphere <=> Corona/SW connection in various coronal hole properties
- Test Nonlinear Alfven wave scenario by SOT<=>EIS/XRT observation

Variety & Observational Test

Obs of Alfven waves is difficult, so we need ideas. Photosphere - Corona/SW connection ?

Input Parameters in Our Simulations dv (photospheric fluctuations) <= SOT</p> Amplitude (Spectrum & Polarization : weak dependence) B (photospheric strength) <= SOT</p> f (flux tube expansion) <= 3D simulation</p> Heating by Nonlinear Alfven Waves expects : Larger Coronal Density <= Larger dv, Smaller B</p> Larger Coronal Temperature <= Larger dv, Larger f</p> Larger dv in SW <= Smaller dv, Larger B/f</p> Faster Wind speed <= Larger B/f</p> (LHS by EIS & XRT and RHS by SOT)

Dependence on dv

=> smaller dv_corona

Sensitive Dependence on dv

Interpretation of dv Dependence

- Coronal density, accordingly mass flux of SW, shows steep positive dependence on <dv>, because of an unstable behavior related to the Nonlinearity
- Heating $\Downarrow \Rightarrow T \Downarrow \Rightarrow$ Chromospheric Evaporation $\Downarrow \Rightarrow \rho \Downarrow$
- $\Rightarrow v_{\rm A}(=B/\sqrt{4\pi\rho}) \Uparrow \Rightarrow \delta v/v_{\rm A}(\text{Nonlinearity}) \Downarrow \Rightarrow \text{Dissipation} \Downarrow$
- \Rightarrow Heating \Downarrow : Catastrophe (Suzuki & Inutsuka 2005b)
 - If <dv> = 0.7km/s => 0.4km/s, Density => 1/100

Disappearance of Solar Wind!!

- On May 11, 1999, the observed solar wind density becomes < 0.1(/cm^3), in contrast to the usual value, 5(/cm^3)
- (Note!) Observed wind speed is inconsistent with our result; stream interaction is important for this event. (Usmanov et al.2000)
- Larger dv at Surface => Faster Dissipation => Smaller dv in Corona & SW
- Dependence of T on <dv> is gradual due to Conduction

Dependence on B

 Smaller B => Larger dB/B => Heating in Inner Region => Denser Corona (Coronal Base at Lower Altitude)
 Anticorrelation of B (by SOT) and DEM (by EIS)

Dependence on B/f

Interpretation of B/f Dependence

Simulation also gives V-B/f : Reasonable f=>Dilution/ Adab, Loss Input Energy With Respect to Dissipation Location Small B/f => Small B_corona => Large dB/B_corona => Rapid Dissipation in subsonic region => Slower Wind & Smaller dv in Corona Wave => Thermal => Solar Wind (Thermal-driven Wind) Large B/f => Large B_corona => Small dB/B_corona

- => Slow Dissipation in supersonic region
- => Faster Wind & Larger dv in Corona
- Wave => Solar Wind (Wave-Driven Wind)

Fast/Slow Winds

Dependence on B/f is closely related to Difference of Fast & Slow Winds.

Based on Parameter Study, dv B/f Fast Wind small large Slow Wind large small

For Example,

```
    Fast Wind : dv=0.7km/s, B/f=161(G)/75 =2.1
    Slow Wind : dv=1km/s, B/f=322(G)/450 = 0.7
```

(Note!) We consider Slow Winds from (mid- to low-latitude) coronal holes. A different approach is necessary for slow winds from closed structure (e.g. Helmet Streamer).

Fast/Slow Winds

(Slow Wind Data : Sheeley et al.1997; Parenti et al.2000; Hayes et al.2001)
Anti-Correlation of Coronal T and Wind Speed

(Geiss et al.1995; Schwadron & McComas 2003; McIntosh & Leamon 2005) Larger Alfvenic Amplitude in Fast Wind (e.g.Tsurutani et al.2005)

Photosphere-Corona/SW connection and Solar-B Obs.

Coronal Density <=> photospheric dv(positive), photospheric B(negative)

Interplume/Plume

Larger B : Interplume / Smaller B : Plume

Teriaca et al.(2003); Gabriel et al.(2003)

Coronal Temeprature <=> photospheric dv(positive)

dv in Corona/SW <=> photospheric dv(negative), B/f(positive)

Photospheric B,dv in various regions
 <=> dv (nonthermal broad.) in Corona/SW

Nonthermal broadening may be observed from grand (e.g.Norikura)

SW speed <=> B/f(positive)

• Photospheric B <=> Wind speed by Interplanetary Scintillation / Satellites

Plume/Interplume

Teriaca et al.2003

Discussions

We have assumed injection of fluctuations with constant dv from the photosphere in flux tubes with fixed B & f.

But they change in time.

Change of dv

Transition Region moves (dynamically) by condensation/evaporation

- New steady state after a few times of Alfven time
- Change of B (and accordingly, f)

• Need Multi-Dim. Treatment

Waves generated at higher altitude

by e.g. Reconnection Events

- Avoid attenuation through chromospheric propagation
- Effect : increase of dv in our simulation

Summary

Our 1D MHD simulations covering from photosphere to 0.3AU show :

Corona and transonic solar wind are natural consequence of the photospheric fluctuations of B-field, provided <dv>~>0.5km/s.

Dissipation of nonlinear low-frequency Alfven waves is important
 If <dv> becomes half, the solar wind disappears.

Heating by Nonlinear Alfven Waves expects : (Some Relations are Unique for Nonlinear Alfven Waves)
Larger Coronal Density <= Larger dv, Smaller B
Larger Coronal Temperature <= Larger dv, Larger f
Larger dv in SW <= Smaller dv, Larger B/f
Faster Wind speed <= Larger B/f (LHS by EIS & XRT and RHS by SOT)