SOLAR SPECTRUM FORMATION

Robert J. Rutten

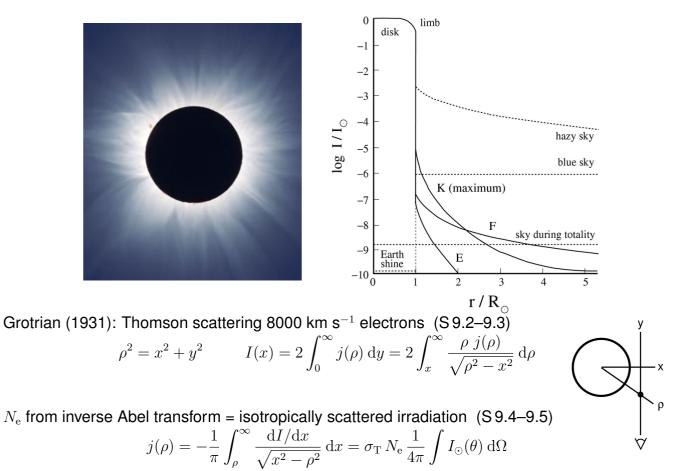
[Sterrekundig Instituut Utrecht & Institutt for Teoretisk Astrofysikk Oslo]

Texts: R.J. Rutten, *"Radiative Transfer in Stellar Atmospheres"* (RTSA), my website
D. Mihalas, *"Stellar Atmospheres"*, 1970, 1978
G.B. Rybicki and A.P. Lightman, *"Radiative Processes in Astrophysics"*, 1979, 2004
M. Stix, *"The Sun"*, 1989, 2002/2004

examples of local, nonlocal, converted photons: white light corona coronium lines EUV corona EUV bright/dark [Zanstra & Bowen PN lines] radiative transfer basics: basic quantities constant S_{ν} plane-atmosphere RT Eddington-Barbier cartoons LTE 1D solar radiation escape: Planck continuous opacity LTE continuum **ITE** line cartoons Boltzmann-Saha LTE line equations solar ultraviolet spectrum VALIIIC temperature solar spectrum formation Ca II H&K versus Halpha NLTE 1D solar radiation escape: bb processes bb rates bb equilibria scattering solar radiation processes VAL3C continuum formation radiative cooling VAL3C radiation budget realistic line cartoon Na D1 Call 8542 versus Halpha **MHD-simulated essolar radiation escape:** Call H in 1D Na D1 in 3D non-E hydrogen in 2D RTSA rap summary:

WHITE LIGHT CORONA

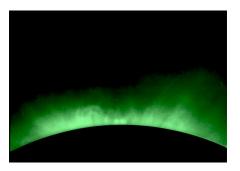
Stix section 9.1.3



"CORONIUM" LINES

Stix section 9.1.3

http://laserstars.org/spectra/Coronium.html



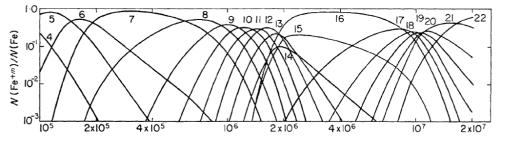
Grotrian, Edlén 1942: forbidden lines high ionization stages (Stix Table 9.2 p. 398)

name	wavelength	identification	$\Delta\lambda_D$	\overline{v}	A_{ul}	previous ion	$\chi_{ m ion}$
green line	530.29 nm	[Fe XIV]	0.051 nm	29 km/s	60 s ⁻¹	Fe XIII	355 eV
yellow line	569.45	[Ca XV]	0.087	46	95	Ca XIV	820
red line	637.45	[Fe XI]	0.049	23	69	Fe IX	235

Coronal sky at Dome C

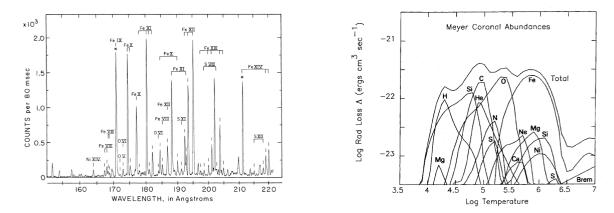
EUV CORONA

Stix section 9.1.3

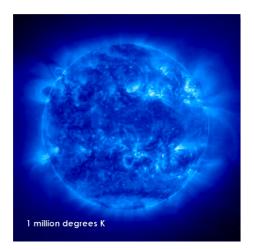


 T_{e} (°K) bb equilibria: collisional excitation = spontaneous deexcitation $\Rightarrow f(T, N_{e})$ (S 9.9–9.10)

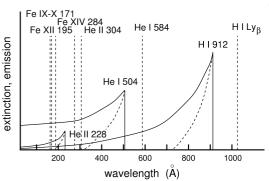
$$n_l C_{lu} = n_l N_e \int_{v_0}^{\infty} \sigma_{lu} f(v) v \, \mathrm{d}v \approx n_u A_{ul} \qquad \sum h\nu \propto \int n_{\rm ion} N_e \, \mathrm{d}z = \int N_e^2 \left(\frac{\mathrm{d}T}{\mathrm{d}z}\right)^{-1} \mathrm{d}T \equiv \mathrm{EM}$$



BRIGHT AND DARK IN EUV IMAGES



- iron lines
 - Fe IX/X 171 Å: about 1.0 MK
 - Fe XII 195 Å: about 1.5 MK
 - Fe XIV 284 Å: about 2 MK
- bright
 - collision up, radiation down
 - thermal photon creation, NLTE equilibrium
 - 171 Å: selected loops = special trees in forest



- dark
 - radiation up, re-radiation at bound-free edge
 - matter containing He $^+,$ He, H: $10^4-10^5~K$
 - large opacity

BASIC QUANTITIES

RTSA 2.1–2.2, Stix 4.2.5

Monochromatic emissivity (Stix uses ε) $dE_{\nu} \equiv j_{\nu} dV dt d\nu d\Omega \qquad dI_{\nu}(s) = j_{\nu}(s) ds$ units j_{ν} : erg cm⁻³ s⁻¹ Hz⁻¹ ster⁻¹ I_{ν} : erg cm⁻² s⁻¹ Hz⁻¹ ster⁻¹

Monochromatic extinction coefficient

$$dI_{\nu} \equiv -\sigma_{\nu} n I_{\nu} ds \qquad dI_{\nu} \equiv -\alpha_{\nu} I_{\nu} ds \qquad dI_{\nu} \equiv -\kappa_{\nu} \rho I_{\nu} ds$$

units: cm² per particle (physics) cm² per cm³ = per cm (RTSA) cm² per gram (astronomy)

Monochromatic source function

 $S_{\nu} \equiv j_{\nu}/\alpha_{\nu} = j_{\nu}/\kappa_{\nu}\rho \qquad S_{\nu}^{\text{tot}} = \frac{\sum j_{\nu}}{\sum \alpha_{\nu}} \qquad S_{\nu}^{\text{tot}} = \frac{j_{\nu}^{c} + j_{\nu}^{l}}{\alpha_{\nu}^{c} + \alpha_{\nu}^{l}} = \frac{S_{\nu}^{c} + \eta_{\nu}S_{\nu}^{l}}{1 + \eta_{\nu}} \qquad \eta_{\nu} \equiv \alpha_{\nu}^{l}/\alpha_{\nu}^{c}$ thick: (κ_{ν}, S_{ν}) more independent than (κ_{ν}, j_{ν}) stimulated emission negatively into $\alpha_{\nu}, \kappa_{\nu}$

Transport equation with τ_{ν} as optical thickness along the beam $\frac{\mathrm{d}I_{\nu}}{\mathrm{d}s} = j_{\nu} - \alpha_{\nu}I_{\nu} \qquad \frac{\mathrm{d}I_{\nu}}{\alpha_{\nu} \mathrm{d}s} = S_{\nu} - I_{\nu} \qquad \mathrm{d}\tau_{\nu} \equiv \alpha_{\nu} \mathrm{d}s \qquad \frac{\mathrm{d}I_{\nu}}{\mathrm{d}\tau_{\nu}} = S_{\nu} - I_{\nu}$

Plane-parallel transport equation with τ_{ν} as radial optical depth and μ as viewing angle

$$d\tau_{\nu} \equiv -\alpha_{\nu} dz \qquad \tau_{\nu}(z_0) = -\int_{\infty}^{z_0} \alpha_{\nu} dz \qquad \mu \equiv \cos\theta \qquad \mu \frac{dI_{\nu}}{d\tau_{\nu}} = I_{\nu} - S_{\nu}$$

CONSTANT SOURCE FUNCTION

Transport equation along the beam (τ_{ν} = optical thickness)

$$\frac{\mathrm{d}I_{\nu}}{\mathrm{d}\tau_{\nu}} = S_{\nu} - I_{\nu} \qquad \qquad I_{\nu}(\tau_{\nu}) = I_{\nu}(0) \,\mathrm{e}^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} S_{\nu}(t_{\nu}) \,\mathrm{e}^{-(\tau_{\nu} - t_{\nu})} \,\mathrm{d}t_{\nu}$$

Invariant S_{ν}

$$I_{\nu}(D) = I_{\nu}(0) e^{-\tau_{\nu}(D)} + S_{\nu} \left(1 - e^{-\tau_{\nu}(D)}\right)$$

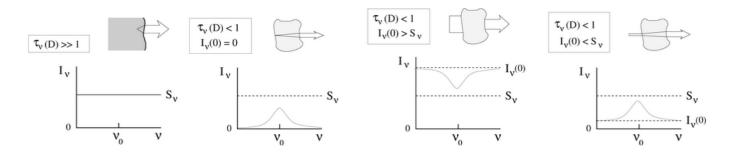
example: $S_{\nu} = B_{\nu}$ for all continuum and line processes in an isothermal cloud

Thick object

$$I_{\nu}(D) \approx S_{\nu}$$

Thin object

$$I_{\nu}(D) \approx I_{\nu}(0) + [S_{\nu} - I_{\nu}(0)] \tau_{\nu}(D) \qquad \qquad I_{\nu}(0) = 0: \ I_{\nu}(D) \approx \tau_{\nu}(D) S_{\nu} = j_{\nu}D$$



RADIATIVE TRANSFER IN A PLANE ATMOSPHERE

RTSA 2.2.2; Stix 4.1.1

Radial optical depth

r radial

$$\label{eq:tau} {\rm d} \tau_\nu = -\kappa_\nu \rho \, {\rm d} r$$

Hubený $\tau_{\nu\mu}$ $\kappa_\nu \, {\rm cm}^2/{\rm gram}$ $\alpha_\nu \, {\rm cm}^{-1} = {\rm cm}^2/{\rm cm}^3$ $\sigma_\nu \, {\rm cm}^2/{\rm particle}$

Transport equation

$$\mu \frac{\mathrm{d}I_{\nu}}{\mathrm{d}\tau_{\nu}} = I_{\nu} - S_{\nu}$$

Integral form

$$I_{\nu}^{-}(\tau_{\nu},\mu) = -\int_{0}^{\tau_{\nu}} S_{\nu}(t_{\nu}) e^{-(t_{\nu}-\tau_{\nu})/\mu} dt_{\nu}/\mu \qquad \qquad I_{\nu}^{+}(\tau_{\nu},\mu) = +\int_{\tau_{\nu}}^{\infty} S_{\nu}(t_{\nu}) e^{-(t_{\nu}-\tau_{\nu})/\mu} dt_{\nu}/\mu$$
"formal solution" NB: both directions pm: Doppler anisotropy S_{ν}

Emergent intensity without irradiation

$$I_{\nu}(0,\mu) = (1/\mu) \int_0^\infty S_{\nu}(\tau_{\nu}) \, \mathrm{e}^{-\tau_{\nu}/\mu} \, \mathrm{d}\tau_{\nu}$$

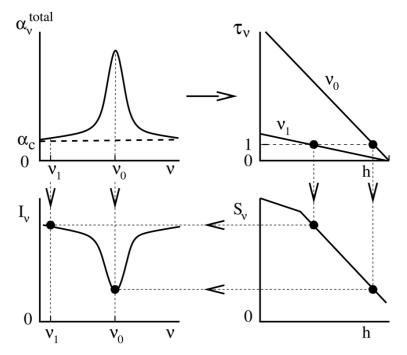
Eddington-Barbier approximation

$$\left(I_{\nu}(0,\mu)\approx S_{\nu}(\tau_{\nu}\!=\!\mu)\right)$$

exact for linear $S_{\nu}(\tau_{\nu})$

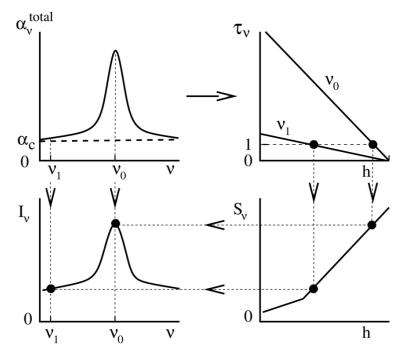
SIMPLE ABSORPTION LINE

- extinction: bb process gives peak in $\alpha_{total} = \alpha_c + \alpha_l = (1 + \eta_{\nu}) \alpha_c$
- optical depth: assume height-invariant $\alpha_{total} \Rightarrow \text{linear} (1 + \eta_{\nu}) \tau_c$
- source function: assume same for line (bb) and continuous (bf, ff) processes
- use Eddington-Barbier (here nearly exact, why?)



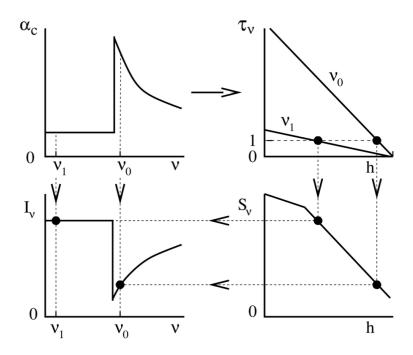
SIMPLE EMISSION LINE

- extinction: bb process gives peak in $\alpha_{total} = \alpha_c + \alpha_l = (1 + \eta_{\nu}) \alpha_c$
- optical depth: assume height-invariant $\alpha_{total} \Rightarrow \text{linear} (1 + \eta_{\nu}) \tau_c$
- source function: assume same for line (bb) and continuous (bf, ff) processes
- use Eddington-Barbier (here nearly exact, why?)



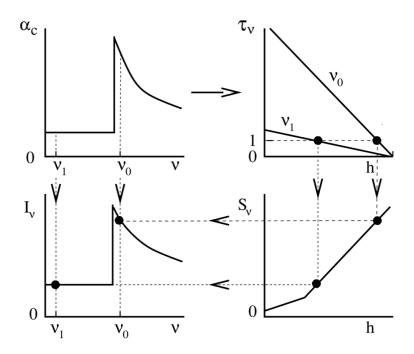
SIMPLE ABSORPTION EDGE

- extinction: bf process gives edge in α_{ν}^{c} , with $\alpha_{\nu}^{c} \propto \nu^{3}$ if hydrogenic
- optical depth: assume height-invariant (unrealistic, why?)
- source function: assume same for the whole frequency range (unrealistic, why?)
- use Eddington-Barbier (here nearly exact, why?)



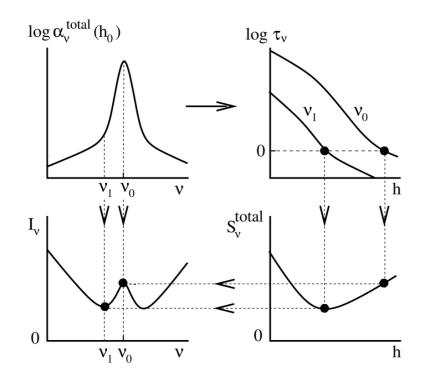
SIMPLE EMISSION EDGE

- extinction: bf process gives edge in α_{ν}^{c} , with $\alpha_{\nu}^{c} \propto \nu^{3}$ if hydrogenic
- optical depth: assume height-invariant (unrealistic, why?)
- source function: assume same for the whole frequency range (unrealistic, why?)
- use Eddington-Barbier (here nearly exact, why?)



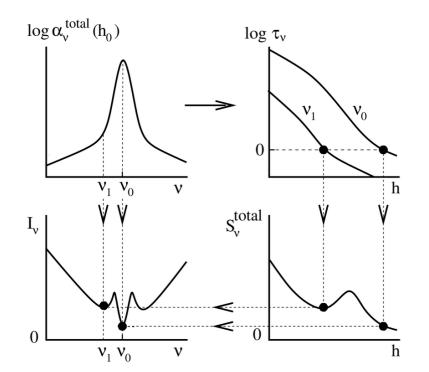
SELF-REVERSED ABSORPTION LINE

- extinction: bb peak with height-dependent amplitude and shape
- optical depth: non-linear even in the log
- source function: decrease followed by increase (any idea why?)
- use Eddington-Barbier (questionable, why?)



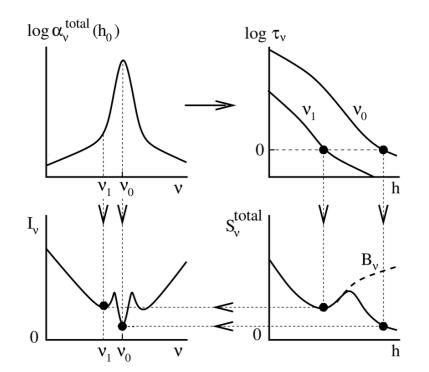
DOUBLY REVERSED ABSORPTION LINE

- extinction: bb peak with height-dependent amplitude and shape
- optical depth: non-linear even in the log
- source function: decrease followed by increase followed by decrease (any idea why?)
- use Eddington-Barbier (questionable, why?)



DOUBLY REVERSED ABSORPTION LINE

- extinction: bb peak with height-dependent amplitude and shape
- optical depth: non-linear even in the log
- source function: decrease followed by increase followed by decrease (NLTE scattering)
- use Eddington-Barbier (questionable, why?)



SOLAR SPECTRUM FORMATION

Robert J. Rutten

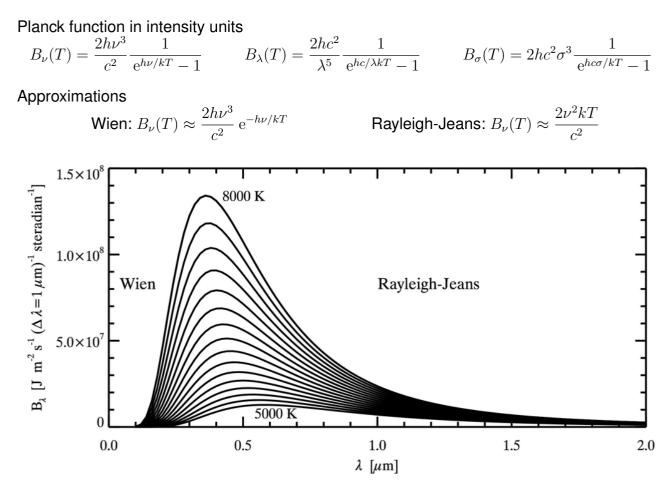
[Sterrekundig Instituut Utrecht & Institutt for Teoretisk Astrofysikk Oslo]

Texts: R.J. Rutten, *"Radiative Transfer in Stellar Atmospheres"* (RTSA), my website
D. Mihalas, *"Stellar Atmospheres"*, 1970, 1978
G.B. Rybicki and A.P. Lightman, *"Radiative Processes in Astrophysics"*, 1979, 2004
M. Stix, *"The Sun"*, 1989, 2002/2004

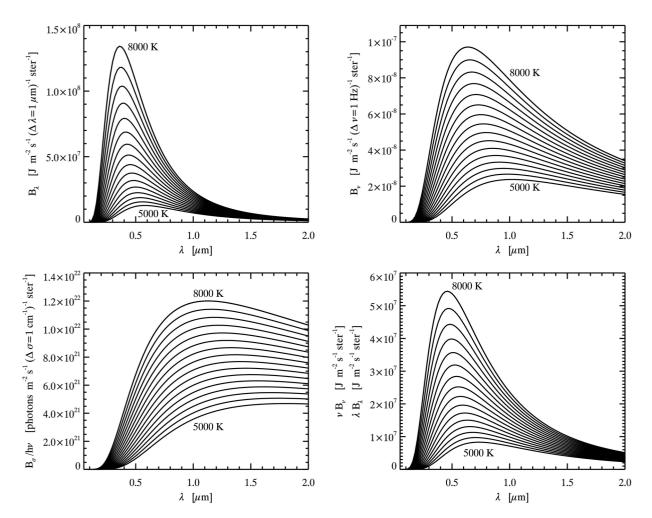
examples of local, nonlocal, converted photons: white light corona coronium lines EUV corona EUV bright/dark [Zanstra & Bowen PN lines] radiative transfer basics: basic quantities constant S_{ν} plane-atmosphere RT Eddington-Barbier cartoons LTE 1D solar radiation escape: Planck continuous opacity LTE continuum **ITE** line cartoons Boltzmann-Saha LTE line equations solar ultraviolet spectrum VALIIIC temperature solar spectrum formation Ca II H&K versus Halpha NLTE 1D solar radiation escape: bb processes bb rates bb equilibria scattering solar radiation processes VAL3C continuum formation radiative cooling VAL3C radiation budget realistic line cartoon Na D1 Call 8542 versus Halpha **MHD-simulated essolar radiation escape:** Call H in 1D Na D1 in 3D non-E hydrogen in 2D RTSA rap summary:

PLANCK

RTSA Chapt. 2; Stix 4.5



PLANCK FUNCTION VARIATIONS

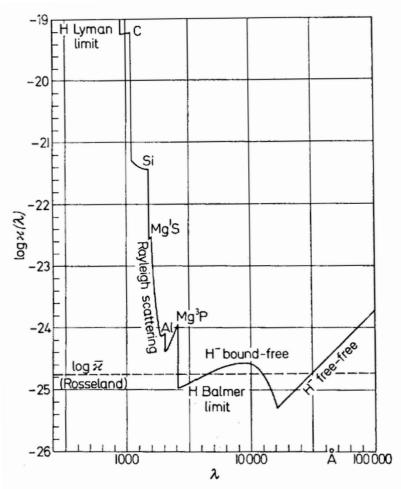


CONTINUOUS OPACITY IN THE SOLAR PHOTOSPHERE

RTSA Chapt. 8; Stix Fig. 4.5; figure from E. Böhm-Vitense

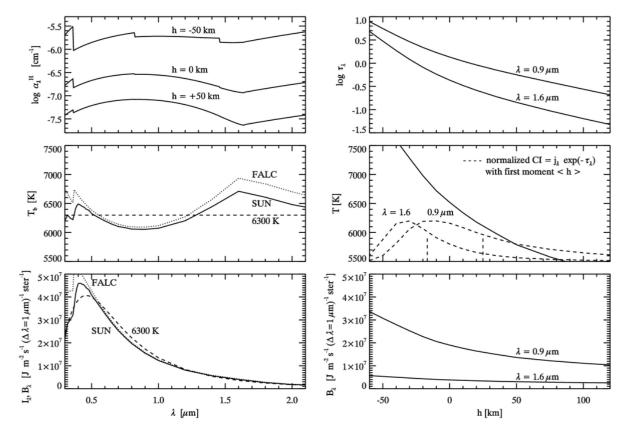
- bound-free
 - optical, near-infrared: H⁻
 - UV: Si I, Mg I, Al I, Fe I (electron donors for H⁻)
 - EUV: HI Lyman; He I, He II
- free-free
 - infrared, sub-mm: H^{-}
 - radio: HI
- electron scattering
 - Thomson scattering (large height)
 - Rayleigh scattering (near-UV)
- Rosseland average

$$\frac{1}{\overline{\kappa}} = \int_0^\infty \frac{1}{\kappa_\nu} \frac{\mathrm{d}B_\nu/\mathrm{d}T}{\mathrm{d}B/\mathrm{d}T} \,\mathrm{d}\nu$$



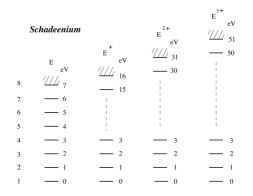
SOLAR OPTICAL AND NEAR-INFRARED CONTINUUM FORMATION

Assumed: LTE, opacity only from HI bf+ff and H⁻bf+ff, FALC model atmosphere Solar disk-center continuum: from Allen, *"Astrophysical Quantities"*, 1976



Does the Eddington-Barbier approximation hold?

Saha–Boltzmann level populations



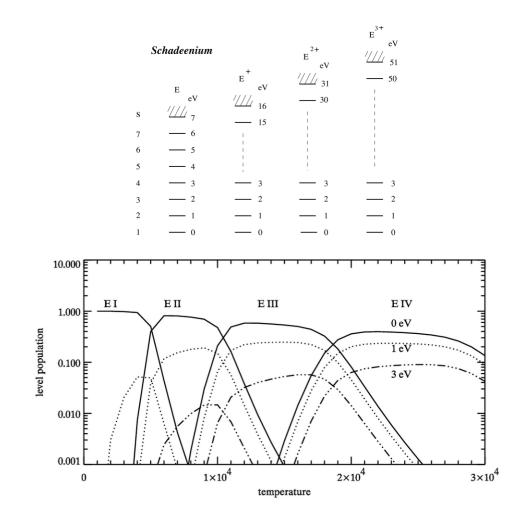
Boltzmann distribution per ionization stage:
$$\frac{n_{r,s}}{N_r} = \frac{g_{r,s}}{U_r} e^{-\chi_{r,s}/kT}$$

partition function:
$$U_r \equiv \sum_s g_{r,s} e^{-\chi_{r,s}/kT}$$

Saha distribution over ionization stages:

$$\frac{N_{r+1}}{N_r} = \frac{1}{N_e} \frac{2 U_{r+1}}{U_r} \left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} e^{-\chi_r/kT}$$

Saha–Boltzmann Schadeenium



LTE LINES

RTSA Chapt. 2; Stix 4.1.3

continuum optical depth scale

$$\eta_{\nu} \equiv \kappa_l / \kappa_C \qquad d\tau_{\nu} = d\tau_C + d\tau_l = (1 + \eta_{\nu}) d\tau_C$$

emergent intensity at disk center in LTE

$$I_{\nu}(0,1) = \int_{0}^{\infty} B_{\nu} \exp(-\tau_{\nu}) d\tau_{\nu} = \int_{0}^{\infty} (1+\eta_{\nu}) B_{\nu} \exp\left(-\int_{0}^{\tau_{C}} (1+\eta_{\nu}) d\tau_{C}'\right) d\tau_{C}$$

Eddington-Barbier: $I_{\nu}(0,1) \approx B_{\nu} [\tau_{\nu} = 1] = B_{\nu} [\tau_{C} = 1/(1+\eta_{\nu})]$

line extinction coefficient shape = Maxwell [+ "microturbulence"] Gauss \otimes damping Lorentz $\Delta \nu_{\rm D} \equiv \frac{\nu_0}{c} \sqrt{\frac{2RT}{A}} [+\xi_{\rm t}^2] \qquad \phi(\nu) = \frac{\gamma}{\sqrt{\pi}\Delta\nu_{\rm D}} \int_{-\infty}^{+\infty} \frac{\exp(-(\nu-\nu')^2/\Delta\nu_{\rm D}^2)}{[2\pi(\nu'-\nu_0)]^2 + \gamma^2/4} \,\mathrm{d}\nu' = \frac{1}{\sqrt{\pi}\Delta\nu_{\rm D}} H(a,v)$

Voigt function

$$v \equiv \frac{\nu - \nu_0}{\Delta \nu_{\rm D}} \qquad a \equiv \frac{\gamma}{4\pi \Delta \nu_{\rm D}} \qquad H(a, v) \equiv \frac{a}{\pi} \int_{-\infty}^{+\infty} \frac{\mathrm{e}^{-y^2}}{(v - y)^2 + a^2} \,\mathrm{d}y \qquad \text{area in } \mathbf{v}: \sqrt{\pi}$$

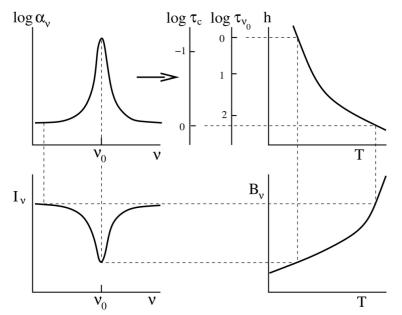
line extinction coefficient

$$\sigma_l = \frac{h\nu}{4\pi} B_{lu} \phi(\nu) = \frac{\pi e^2}{m_{\rm e}c} f_l \phi(\nu) = \frac{\sqrt{\pi} e^2 f_l}{m_{\rm e}c \,\Delta\nu_{\rm D}} H(a, v) \qquad A_{ul} = 6.67 \times 10^{13} \frac{g_l}{g_u} \frac{f_{lu}}{\lambda^2} \,\, \mathrm{s}^{-1} \left(\lambda \,\,\mathrm{nm}\right)$$

 $\kappa_l = \sigma_l \, n_l^{\text{LTE}} \, (1 - e^{-h\nu/kT}) / \rho = \frac{\sigma_l}{\mu m_{\text{H}}} \, \frac{n_i}{\sum n_i} \, \frac{n_{ij}}{n_i} \, \frac{n_{ijk}}{n_{ij}} \, (1 - e^{-h\nu/kT}) \qquad i, j, k \text{ species, stage, lower level abundance, Saha, Boltzmann}$

STELLAR LTE ABSORPTION LINE

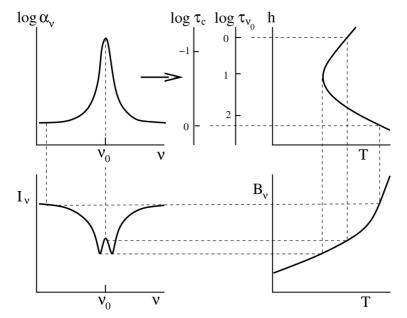
- extinction: large bb peak in $\alpha_{total}(h) = \alpha_c(h) + \alpha_l(h)$, both decreasing with height
- optical depth: the inward integration $\tau_{\nu} = -\int \alpha_{\nu} dh$ along the line of sight reaches $\tau_{\nu} = 1$ at much larger height at line center than in the adjacent continuum
- source function: $S_{\nu}(h) = B_{\nu}[T(h)]$ (neglect variation over the profile)
- intensity: the emergent profile is a two-sided mapping of $B_{\nu}[T(h)]$ sampled at $h(\tau_{\nu} \approx 1)$



Why are LTE lines with the same $\alpha_c(h)$ and $\alpha_l(h)$ deeper in the blue than in the red?

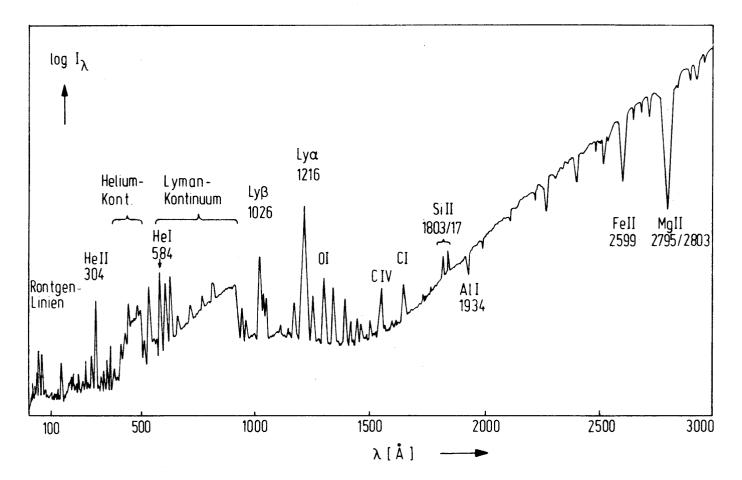
STELLAR LTE SELF-REVERSED LINE

- extinction: large bb peak in $\alpha_{total}(h) = \alpha_c(h) + \alpha_l(h)$, both decreasing with height
- optical depth: the inward integration $\tau_{\nu} = -\int \alpha_{\nu} dh$ along the line of sight reaches $\tau_{\nu} = 1$ at much larger height at line center than in the adjacent continuum
- source function: $S_{\nu}(h) = B_{\nu}[T(h)]$ (neglect variation over the profile)
- intensity: the emergent profile is a two-sided mapping of $B_{\nu}[T(h)]$ sampled at $h(\tau_{\nu} \approx 1)$

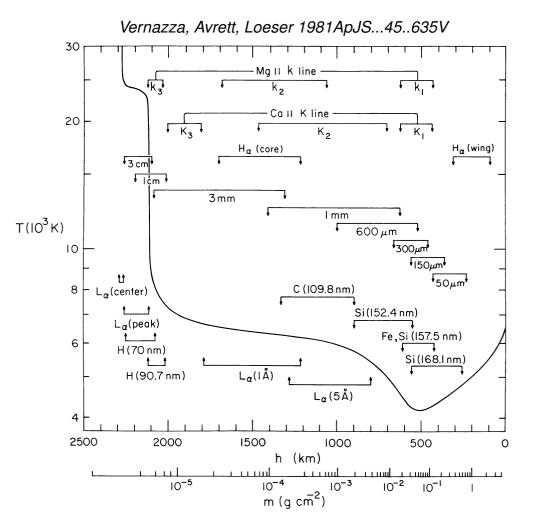


SOLAR ULTRAVIOLET SPECTRUM

Scheffler & Elsässer, courtesy Karin Muglach

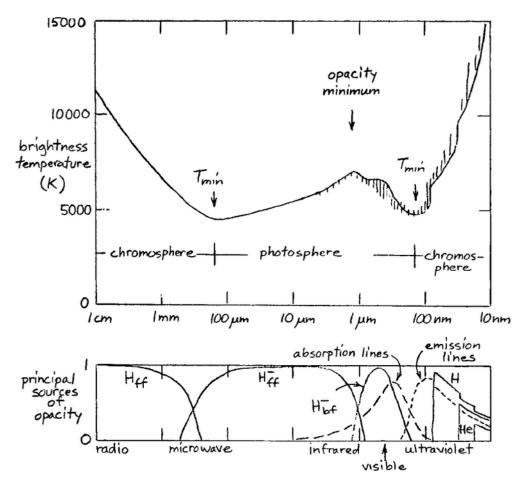


VALIIIC MODEL

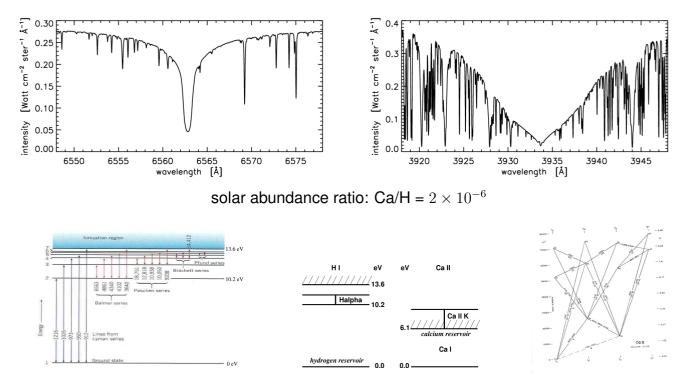


SOLAR SPECTRUM FORMATION

Avrett 1990IAUS..138....3A



$\mbox{H-}\alpha$ AND Call K IN THE SOLAR SPECTRUM

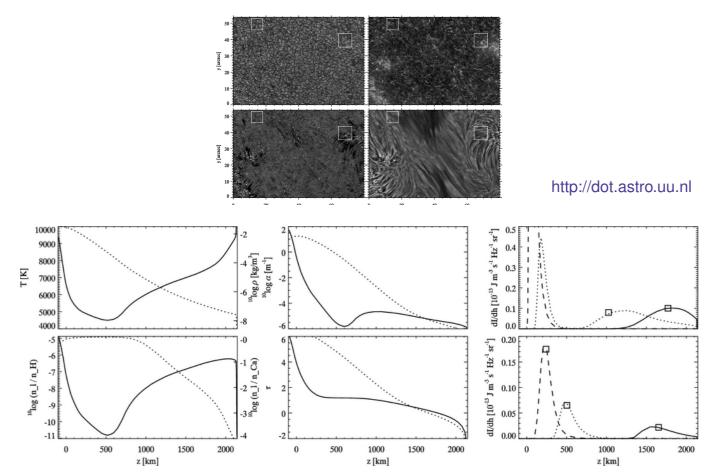


Assuming LTE at T = 5000 K, $P_e = 10^2$ dyne cm⁻²:

 $\text{Boltzmann HI:} \ \frac{n_2}{n_1} = 4.2 \times 10^{-10} \qquad \text{Saha Ca II:} \ \frac{N_{\text{Ca II}}}{N_{\text{Ca}}} \approx 1 \qquad \frac{\text{Ca II} \, (n\!=\!1)}{\text{HI} \, (n\!=\!2)} = 8 \times 10^3$

Call H & H α in LTE

Leenaarts et al. 2006A&A...449.1209L



SOLAR SPECTRUM FORMATION

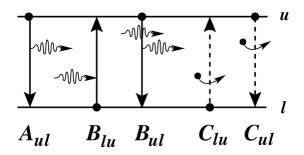
Robert J. Rutten

[Sterrekundig Instituut Utrecht & Institutt for Teoretisk Astrofysikk Oslo]

Texts: R.J. Rutten, *"Radiative Transfer in Stellar Atmospheres"* (RTSA), my website
D. Mihalas, *"Stellar Atmospheres"*, 1970, 1978
G.B. Rybicki and A.P. Lightman, *"Radiative Processes in Astrophysics"*, 1979, 2004
M. Stix, *"The Sun"*, 1989, 2002/2004

examples of local, nonlocal, converted photons: white light corona coronium lines EUV corona EUV bright/dark [Zanstra & Bowen PN lines] radiative transfer basics: basic quantities constant S_{ν} plane-atmosphere RT Eddington-Barbier cartoons LTE 1D solar radiation escape: Planck continuous opacity LTE continuum **ITE** line cartoons Boltzmann-Saha LTE line equations solar ultraviolet spectrum VALIIIC temperature solar spectrum formation Ca II H&K versus Halpha NLTE 1D solar radiation escape: bb processes bb rates bb equilibria scattering solar radiation processes VAL3C continuum formation radiative cooling VAL3C radiation budget realistic line cartoon Na D1 Call 8542 versus Halpha **MHD-simulated essolar radiation escape:** Call H in 1D Na D1 in 3D non-E hydrogen in 2D RTSA rap summary:

BOUND-BOUND PROCESSES AND EINSTEIN COEFFICIENTS



Spontaneous deexcitation

 $A_{ul} \equiv$ transition probability for spontaneous deexcitation from state u to state l per sec per particle in state u

Radiative excitation

 $B_{lu}\overline{J}^{\varphi}_{\nu_0} \equiv$ number of radiative excitations from state l to state u per sec per particle in state l

Induced deexcitation

 $B_{ul}\overline{J}_{\nu_0}^{\chi} \equiv$ number of induced radiative deexcitations from state u to state l per sec per particle in state u

Collisional excitation and deexcitation

 $C_{lu} \equiv$ number of collisional excitations from state l to state u per sec per particle in state l

 $C_{ul} \equiv$ number of collisional deexcitations from state u to state l per sec per particle in state u

BOUND-BOUND RATES

RTSA 2.3.1, 2.3.2, 2.6.1; Stix 4.2

Monochromatic bb rates expressed in Einstein coefficients (intensity units)

 $\begin{array}{ccc} n_u A_{ul} \chi(\nu)/4\pi & n_u B_{ul} I_\nu \psi(\nu)/4\pi & n_l B_{lu} I_\nu \phi(\nu)/4\pi & n_u C_{ul} & n_l C_{lu} \end{array}$ spontaneous emission stimulated emission radiative excitation collisional (de-)excitation

Einstein relations

$$g_u B_{ul} = g_l B_{lu}$$
 $(g_u/g_l) A_{ul} = (2h\nu^3/c^2) B_{lu}$ $C_{ul}/C_{lu} = (g_l/g_u) \exp(E_{ul}/kT)$

required for TE detailed balancing with $I_{\nu} = B_{\nu}$, but hold universally

General line source function $j_{\nu} = \frac{h\nu}{4\pi} n_u A_{ul} \chi(\nu) \qquad \alpha_{\nu} = \frac{h\nu}{4\pi} \left[n_l B_{lu} \phi(\nu) - n_u B_{ul} \psi(\nu) \right] \qquad S_l = \frac{n_u A_{ul} \chi(\nu)}{n_l B_{lu} \phi(\nu) - n_u B_{ul} \psi(\nu)}$

Simplified line source function

CRD:
$$\chi(\nu) = \psi(\nu) = \phi(\nu)$$
 $S_l = \frac{n_u A_{ul}}{n_l B_{lu} - n_u B_{ul}} = \frac{2h\nu^3}{c^2} \frac{1}{\frac{g_u n_l}{g_l n_u} - 1}$ Boltzmann: $S_l = B_{\nu}(T)$

Statistical equilibrium equations for level j

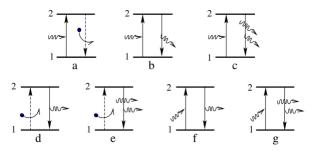
$$n_{j} \sum_{j \neq i}^{N} R_{ji} = \sum_{j \neq i}^{N} n_{j} R_{ij} \qquad R_{ji} = A_{ji} + B_{ji} \overline{J_{ji}} + C_{ji} \qquad \overline{J_{ji}} \equiv \frac{1}{4\pi} \int_{0}^{4\pi} \int_{0}^{\infty} I_{\nu} \phi(\nu) \, \mathrm{d}\nu \, \mathrm{d}\Omega$$

time-independent population bb rates per particle in j

total (= mean) mean intensity

BOUND-BOUND EQUILIBRIA

RTSA missing; Stix 4.1.2



- *LTE = large collision frequency –* interior, low photosphere
 - up: mostly collisional = thermal creation (d + e)
 - down: mostly collisional = large destruction probability (a)
 - photon travel: "honorary gas particles" or negligible leak
- *NLTE = statistical equilibrium or time-dependent –* chromosphere, TR
 - photon travel: non-local impinging (pumping), loss (suction)
 - two-level scattering: coherent/complete/partial redistribution
 - multi-level: photon conversion, sensitivity transcription
- coronal equilibrium = hot tenuous coronal EUV
 - up: only collisional = thermal creation (only d)
 - down: only spontaneous (only d)
 - photon travel: escape / drown / scatter bf H I, He I, He II

SCATTERING EQUATIONS

RTSA 4.1–4.3

Destruction probability
coherent:
$$\varepsilon_{\nu} \equiv \frac{\alpha_{\nu}^{a}}{\alpha_{\nu}^{a} + \alpha_{\nu}^{s}}$$
 2-level CRD: $\varepsilon_{\nu_{0}} \equiv \frac{\alpha_{\nu_{0}}^{a}}{\alpha_{\nu_{0}}^{a} + \alpha_{\nu_{0}}^{s}} = \frac{C_{21}}{C_{21} + A_{21} + B_{21}B_{\nu_{0}}}$

Elastic scattering

coherent: $S_{\nu} = (1 - \varepsilon_{\nu})J_{\nu} + \varepsilon_{\nu}B_{\nu}$ 2-level CRD: $S_{\nu_0} = (1 - \varepsilon_{\nu_0})J_{\nu_0} + \varepsilon_{\nu_0}B_{\nu_0}$

Schwarzschild equation and Lambda operator

$$J_{\nu}(\tau_{\nu}) \equiv \frac{1}{2} \int_{-1}^{+1} I_{\nu}(\tau_{\nu}, \mu) \, \mathrm{d}\mu = \frac{1}{2} \int_{0}^{\infty} S_{\nu}(t_{\nu}) E_{1}(|t_{\nu} - \tau_{\nu}|) \, \mathrm{d}t_{\nu} \equiv \mathbf{\Lambda}_{\tau_{\nu}}[S_{\nu}(t_{\nu})]$$
surface: $J_{\nu}(0) \approx \frac{1}{2} S_{\nu}(\tau_{\nu} = 1/2)$ depth: $J_{\nu}(\tau_{\nu}) \approx S_{\nu}(\tau_{\nu})$ diffusion: $J_{\nu}(\tau_{\nu}) \approx B_{\nu}(\tau_{\nu})$

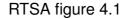
Scattering in an isothermal atmosphere coherent: $S_{\nu}(0) = \sqrt{\varepsilon_{\nu}} B_{\nu}$

2-level CRD: $S_{\nu_0}(0) = \sqrt{\varepsilon_{\nu_0}} B_{\nu_0}$

Thermalizaton depth

coherent: $\Lambda_{\nu} = 1/\varepsilon_{\nu}^{1/2}$ Gauss profile: $\Lambda_{\nu_0} \approx 1/\varepsilon_{\nu_0}$ Lorentz profile: $\Lambda_{\nu_0} \approx 1/\varepsilon_{\nu_0}^2$

EXPONENTIAL INTEGRALS



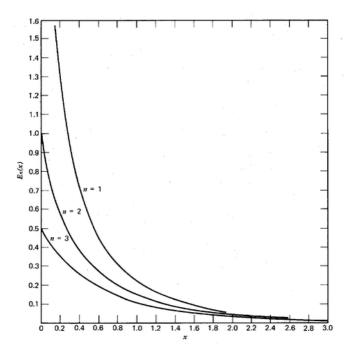
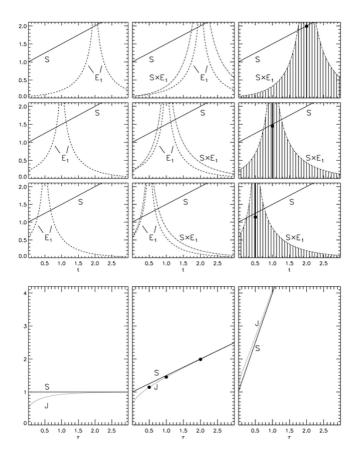


Figure 4.1: The first three exponential integrals $E_n(x)$. $E_1(x)$ has a singularity at x = 0. For large x all $E_n(x)$ have $E_n(x) \approx \exp(-x)/x$. From Gray (1992).

THE WORKING OF THE LAMBDA OPERATOR

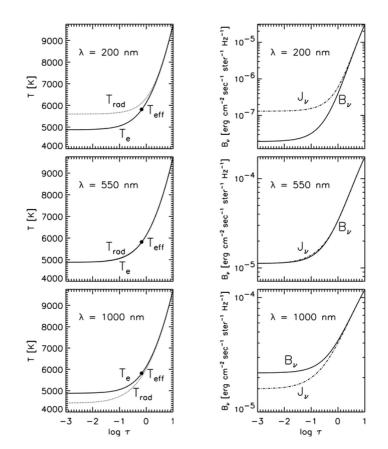
RTSA figure 4.1; Thijs Krijger production



GREY RE LTE SOLAR-TEMPERATURE ATMOSPHERE

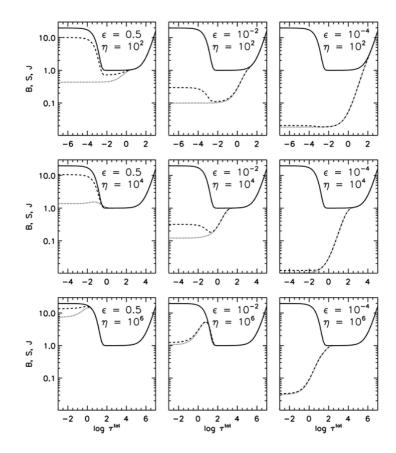
RTSA figure 4.9; Thijs Krijger production

Temperature stratification: $T(\tau) \approx T_{\text{eff}} \left(\frac{3}{4}\tau + \frac{1}{2}\right)^{1/4}$



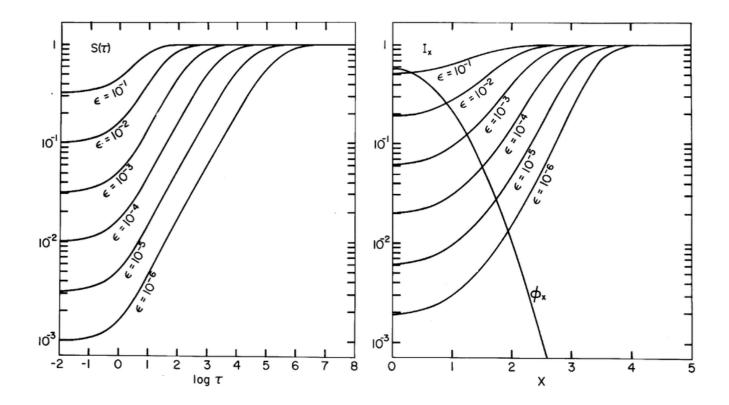
B, J, S FOR SOLAR-LIKE COHERENT LINE SCATTERING

RTSA figure 4.11; Thijs Krijger production



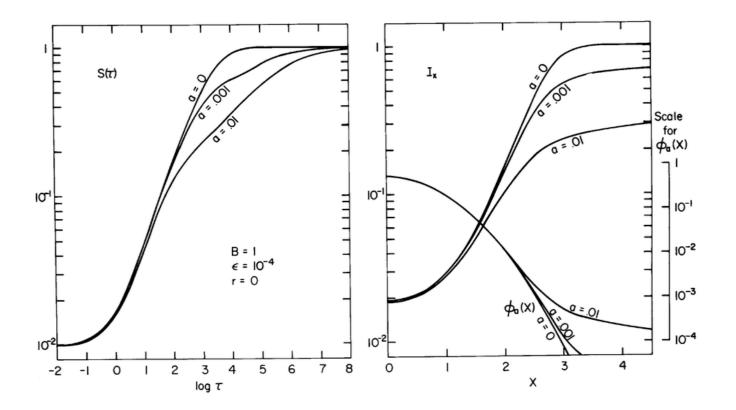
CRD RESONANT SCATTERING IN AN ISOTHERMAL ATMOSPHERE

RTSA figure 4.12; from Avrett 1965SAOSR.174..101A



IDEM FOR DIFFERENT LINE PROFILES

RTSA figure 4.12; from Avrett 1965SAOSR.174..101A



IDEM WITH BACKGROUND CONTINUUM

RTSA figure 4.13; from Avrett 1965SAOSR.174..101A

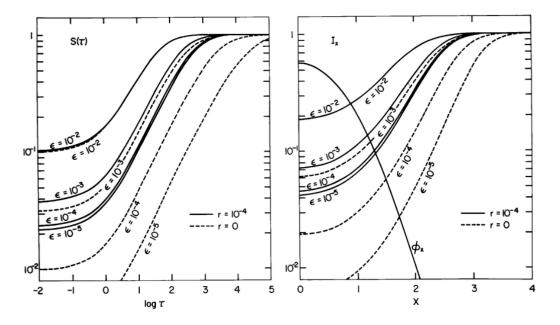


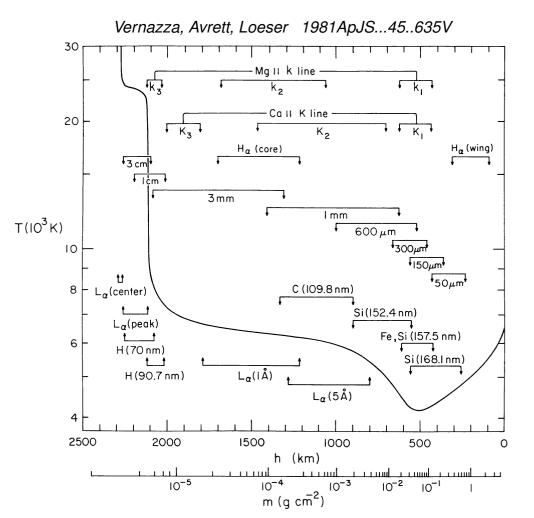
Figure 4.13: Avrett results for two-level-atom lines with complete redistribution and a background continuum. The atmosphere is isothermal. Axis labeling and parameters as for the upper panels of Figure 4.12; the extinction profile $\varphi(x)$ is again Gaussian (righthand panel). Dashed curves: $r \equiv \alpha_{\nu}^{\nu}/\alpha_{\nu_{0}}^{l}$ set to r = 0, describing pure resonance scattering without background continuum. Solid curves: $r = 10^{-4}$ or $\eta_{\nu_{0}} = 10^{4}$, describing fairly strong lines. Lack of continuum thermalization is unimportant when $r \ll \varepsilon_{\nu_{0}}$. Lack of collisional destruction is unimportant when $\varepsilon_{\nu_{0}} \ll r$. From Avrett (1965).

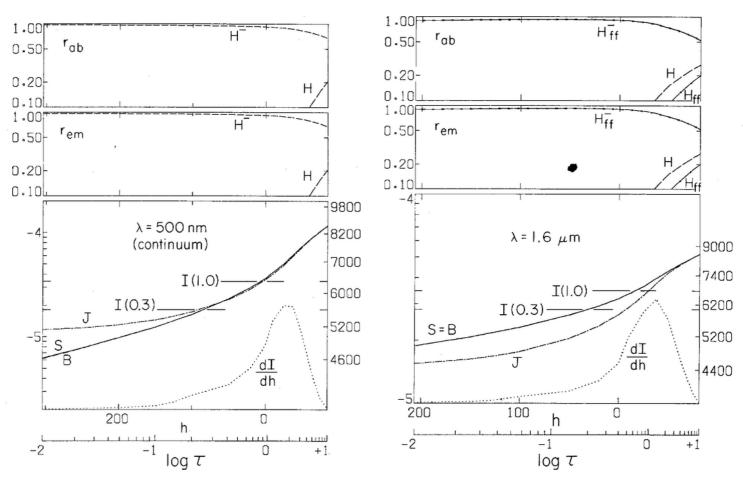
SOLAR ATMOSPHERE RADIATIVE PROCESSES

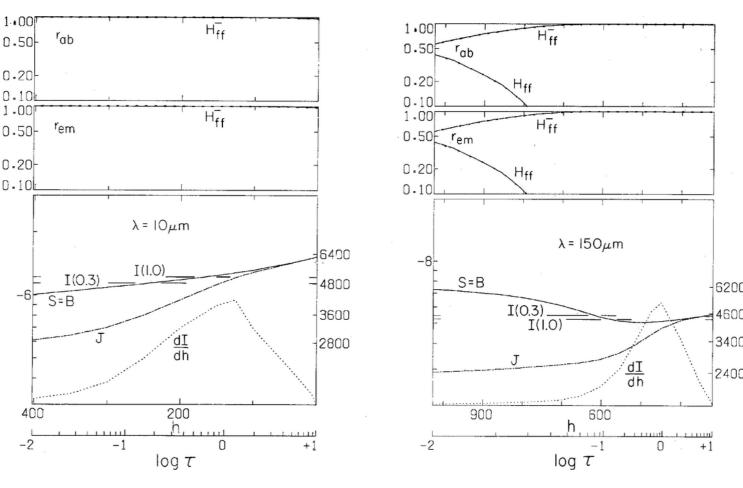
RTSA Chapt. 8; Stix Fig. 4.5

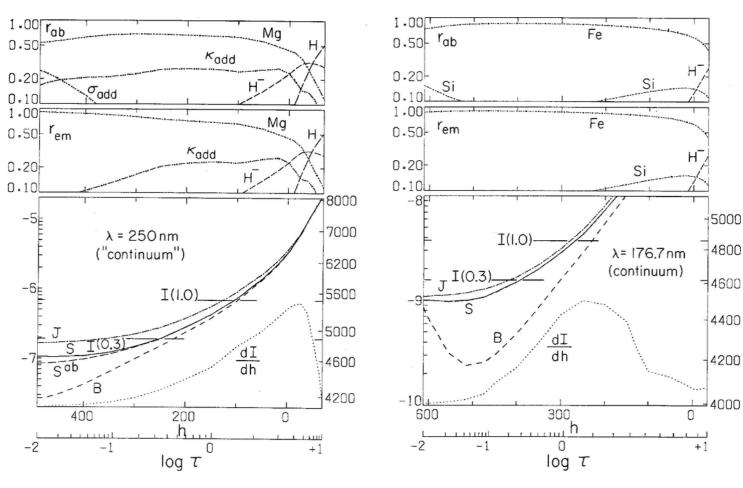
• bound-bound – S_{ν} , κ_{ν} NLTE? PRD? -19 neutral atom transitions H Lyman LLC limit ion transitions -20 molecule transitions • bound-free – S_{ν} , κ_{ν} NLTE? always CRD -21 H⁻ optical, near-infrared Si - HI Balmer, Lyman; He I, He II -22 (V)×601 - FeI, SiI, MgI, AII electron donors Mg'S • free-free – S_{ν} always LTE, κ_{ν} NLTE Rayleigh – H[–] infrared, sub-mm -23 - HI radio scattering Mg³P -24 • *electron scattering* – always NLTE, Doppler? treetree H bound-free Thomson scattering log x (Rosseland Rayleigh scattering -25 H Balmer limit • collective – p.m. - cyclotron, synchrotron radiation -26 1000 100 000 10000 λ plasma radiation

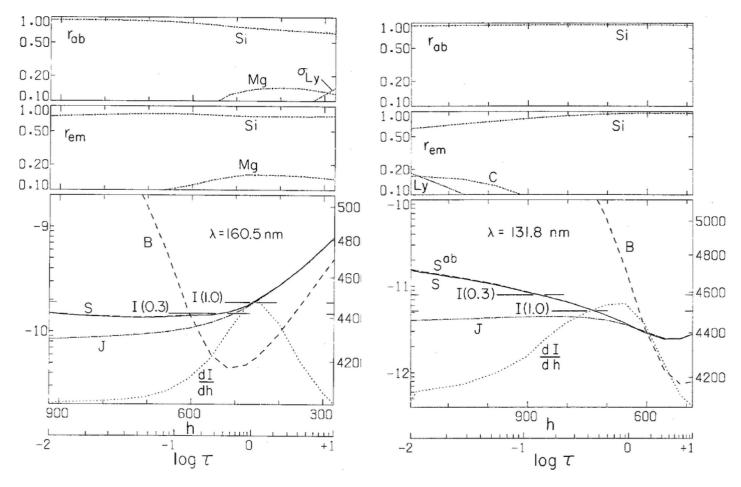
VALIIIC MODEL

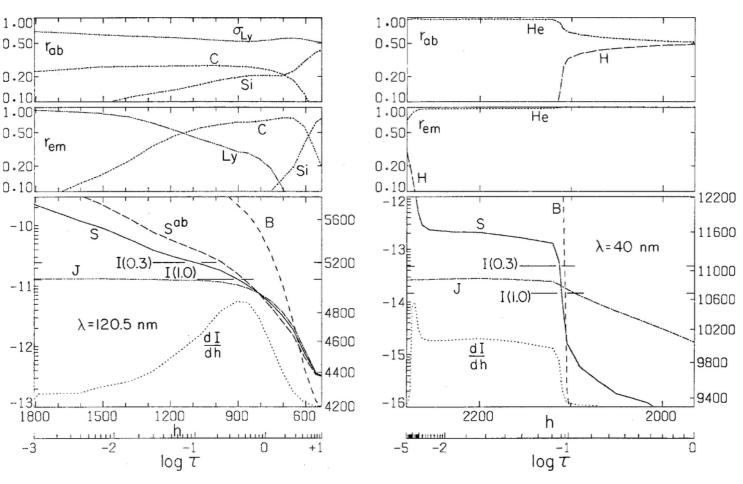












RADIATIVE COOLING

RTSA 7.3.2

Radiative equilibrium condition

$$\Phi_{\text{tot}}(z) \equiv \frac{\mathrm{d}\mathcal{F}_{\text{rad}}(z)}{\mathrm{d}z} = 0$$

= $4\pi \int_0^\infty \alpha_\nu(z) \left[S_\nu(z) - J_\nu(z)\right] \mathrm{d}\nu$
= $2\pi \int_0^\infty \int_{-1}^{+1} \left[j_{\nu\mu}(z) - \alpha_{\nu\mu}(z) I_{\nu\mu}(z)\right] \mathrm{d}\mu \,\mathrm{d}\nu$

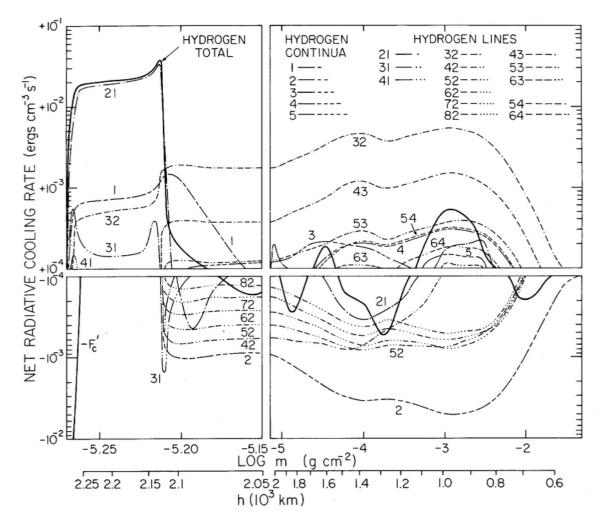
Net radiative cooling in a two-level atom gas

$$\Phi_{ul} = 4\pi \alpha_{\nu_0}^l (S_{\nu_0}^l - \overline{J}_{\nu_0})
= 4\pi j_{\nu_0}^l - 4\pi \alpha_{\nu_0}^l \overline{J}_{\nu_0}
= h\nu_0 \left[n_u (A_{ul} + B_{ul} \overline{J}_{\nu_0}) - n_l B_{lu} \overline{J}_{\nu_0} \right]
= h\nu_0 \left[n_u R_{ul} - n_l R_{lu} \right]$$

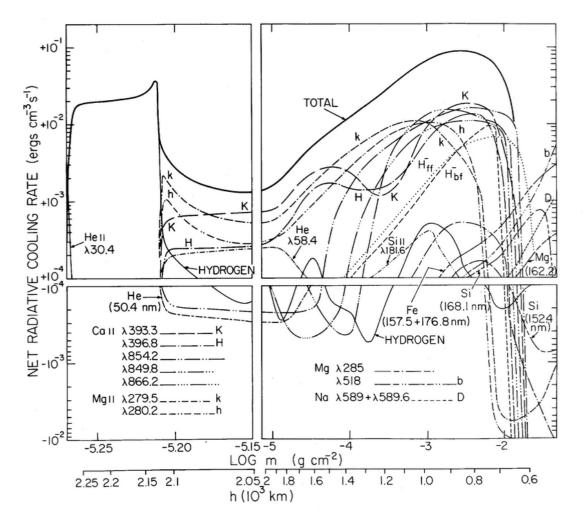
Net radiative cooling in a one-level-plus-continuum gas

$$\Phi_{ci} = 4\pi n_i^{\text{LTE}} b_c \int_{\nu_0}^{\infty} \sigma_{ic}(\nu) \left[B_{\nu} \left(1 - e^{-h\nu/kT} \right) - \frac{b_i}{b_c} J_{\nu} \left(1 - \frac{b_c}{b_i} e^{-h\nu/kT} \right) \right] \, \mathrm{d}\nu$$

VAL3C RADIATION BUDGET

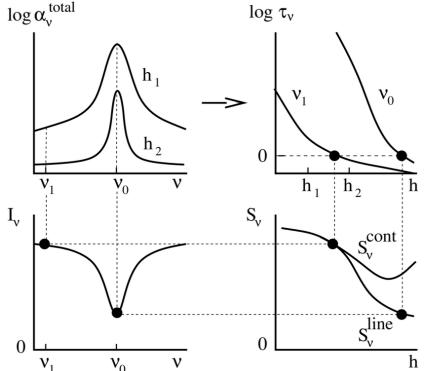


VAL3C RADIATION BUDGET

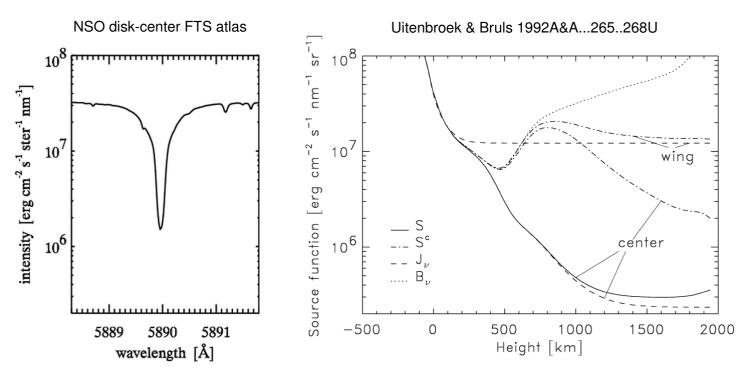


REALISTIC SOLAR ABSORPTION LINE

- extinction: bb peak in $\eta_{\nu}\equiv \alpha_l/\alpha_c$ becomes lower and narrower at larger height
- optical depth: $\tau_{\nu} \equiv -\int \alpha_{\nu}^{\rm total} \, \mathrm{d}h$ increases nearly log-linearly with geometrical depth
- source function: split for line (bb) and continuous (bf, ff, electron scattering) processes
- intensity: Eddington-Barbier for $S_{\nu}^{\text{total}} = (\alpha_c S_c + \alpha_l S_l)/(\alpha_c + \alpha_l) = (S_C + \eta_{\nu} S_l)/(1 + \eta_{\nu})$



SOLAR Nal D2

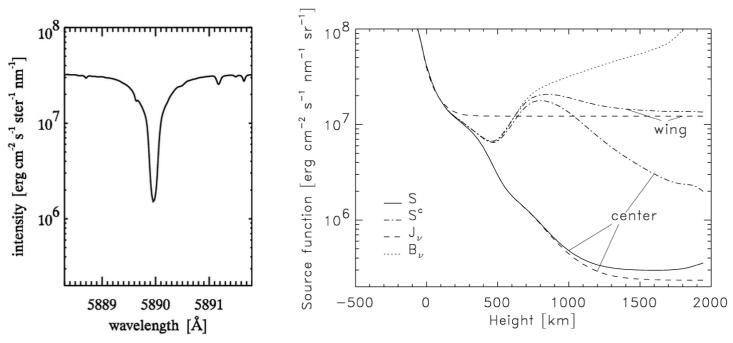


Na I D₂ is a good example of two-level scattering with complete redistribution: very dark

Eddington-Barbier approximation: line-center $\tau = 1$ at $h \approx 600$ km chromospheric velocity response but photospheric brightness response

What is the formation height of the blend line in the blue wing?

SOLAR Nal D2

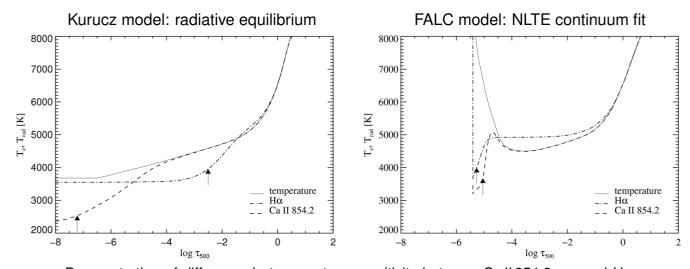


Eddington-Barbier for the blends? Moore, Minnaert, Houtgast 1966sst..book.....M:

5888.703	10.	2.	ATM H2O	R4	302	26
5889.637	14.	2.	ATM H2O	R4	401	26
5889.756 *	752.	4.	ATM H2O	R3	401	26
5889.973M *	752.	120.SS	NA 1(D2)	0.00	1	
5890.203 *	752.	3.	ATM H2O	R4	302	26
5890.495	5.	1.S"	FE 1P	5.06	1313	
5891.178	17.	3.S	ATM H2O	R3	401	17,26
5801 178	17	3 0	FF 1D	1 65	1170	

Call 8542 VERSUS H-alpha IN 1D NLTE

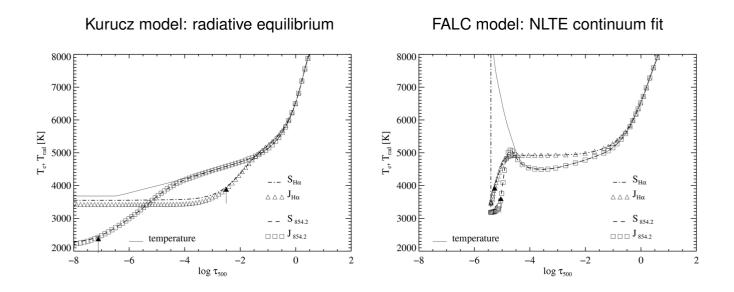
Cauzzi et al. 2007A&A...503..577C



Demonstration of difference in temperature sensitivity between Ca II 854.2 nm and H α . Each panel shows the temperature stratification of a standard solar model atmosphere and the resulting total source functions S_{λ} at the nominal line-center wavelengths for Ca II 854.2 nm and H α , as function of the continuum optical depth at $\lambda = 500$ nm and with the source functions expressed as formal temperatures through Planck function inversion. The arrows mark $\tau = 1$ locations. *Lefthand panel*: radiative-equilibrium model KURUCZ from Kurucz (1979, 1992a, 1992b). It was extended outward assuming constant temperature in order to reach the optically thin regime in Ca II 854.2 nm. *Righthand panel*: empirical continuum-fitting model FALC of Fontenla et al. (1993). Its very steep transition region lies beyond the top of the panel but causes the near-vertical source function increases at left.

SAME WITH RADIATION FIELD

Courtesy Han Uitenbroek



Two-level scattering with $S_{\nu_0} = (1 - \varepsilon_{\nu_0})J_{\nu_0} + \varepsilon_{\nu_0}B_{\nu_0}$ dominates each source function

SOLAR SPECTRUM FORMATION

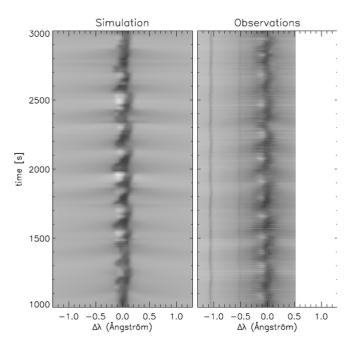
Robert J. Rutten

[Sterrekundig Instituut Utrecht & Institutt for Teoretisk Astrofysikk Oslo]

Texts: R.J. Rutten, *"Radiative Transfer in Stellar Atmospheres"* (RTSA), my website
D. Mihalas, *"Stellar Atmospheres"*, 1970, 1978
G.B. Rybicki and A.P. Lightman, *"Radiative Processes in Astrophysics"*, 1979, 2004
M. Stix, *"The Sun"*, 1989, 2002/2004

examples of local, nonlocal, converted photons: white light corona coronium lines EUV corona EUV bright/dark [Zanstra & Bowen PN lines] radiative transfer basics: basic quantities constant S_{ν} plane-atmosphere RT Eddington-Barbier cartoons LTE 1D solar radiation escape: Planck continuous opacity LTE continuum **ITE** line cartoons Boltzmann-Saha LTE line equations solar ultraviolet spectrum VALIIIC temperature solar spectrum formation Ca II H&K versus Halpha NLTE 1D solar radiation escape: bb processes bb rates bb equilibria scattering solar radiation processes VAL3C continuum formation radiative cooling VAL3C radiation budget realistic line cartoon Na D1 Call 8542 versus Halpha **MHD-simulated essolar radiation escape:** Call H in 1D Na D1 in 3D non-E hydrogen in 2D RTSA rap summary:

Call H_{2V} GRAIN SIMULATION

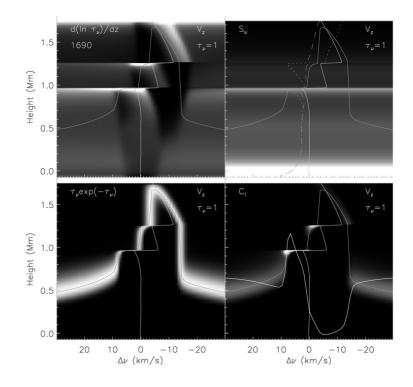


- observation
 Lites, Rutten & Kalkofen 1993
 - sawtooth line-center shift
 - triangular whiskers
 - H_{2V} grains
- simulation Carlsson & Stein 1997
 - 1D radiation hydrodynamics
 - subsurface piston from Fe I blend
 - observer's diagnostics
- analysis (*RR radiative transfer course*)
 - source function breakdown
 - dynamical chromosphere
 - H_{2V} grains = acoustic shocks

SHOCK GRAIN DIAGNOSIS

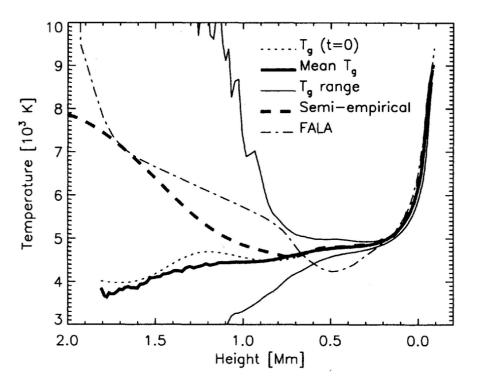
Carlsson & Stein, ApJ 481, 500, 1997

$$I_{\nu}(0) = \int_{0}^{\infty} S_{\nu} e^{-\tau_{\nu}} d\tau_{\nu} = \int_{0}^{\infty} S_{\nu} \tau_{\nu} e^{-\tau_{\nu}} \frac{d \ln \tau_{\nu}}{dz} dz$$



DYNAMIC LOWER CHROMOSPHERE

Carlsson & Stein, ApJ 440, L29, 1995



3D NLTE-SE Na D1 IN 3D MHD SIMULATION

Leenaarts et al. 2010ApJ...709.1362L

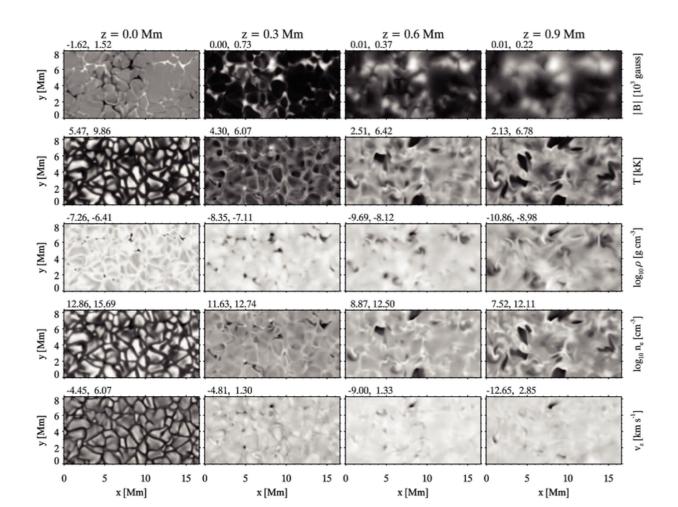
THE QUIET SOLAR ATMOSPHERE OBSERVED AND SIMULATED IN NaI D1

J. LEENAARTS^{1,2,3}, R. J. RUTTEN^{1,3}, K. REARDON^{4,5,6}, M. CARLSSON^{1,2}, AND V. HANSTEEN^{1,2} ¹ Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo, Norway; jorritl@astro.uio.no ² Center of Mathematics for Applications, University of Oslo, P.O. Box 1053, Blindern, N-0316 Oslo, Norway ³ Sterrekundig Instituut, Utrecht University, Postbus 80 000, NL-3508 TA, Utrecht, The Netherlands ⁴ INAF-Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze, Italy ⁵ Astrophysics Research Centre, Queen's University, Belfast, BT7 1NN, UK ⁶ NSO/Sacramento Peak, P.O. Box 62, Sunspot, NM 88349-0062, USA *Received 2009 May 10; accepted 2009 December 15; published 2010 January 13*

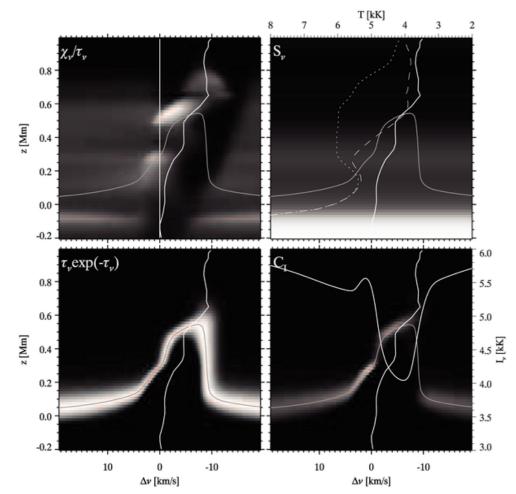
ABSTRACT

The Na I D_1 line in the solar spectrum is sometimes attributed to the solar chromosphere. We study its formation in quiet-Sun network and internetwork. We first present high-resolution profile-resolved images taken in this line with the imaging spectrometer Interferometric Bidimensional Spectrometer at the Dunn Solar Telescope and compare these to simultaneous chromospheric images taken in Ca II 8542 Å and H α . We then model Na I D_1 formation by performing three-dimensional (3D) non-local thermodynamic equilibrium profile synthesis for a snapshot from a 3D radiation-magnetohydrodynamics simulation. We find that most Na I D_1 brightness is not chromospheric but samples the magnetic concentrations that make up the quiet-Sun network in the photosphere, well below the height where they merge into chromospheric canopies, with aureoles from 3D resonance scattering. The line core is sensitive to magneto-acoustic shocks in and near magnetic concentrations, where shocks occur deeper than elsewhere, and may provide evidence of heating deep within magnetic concentrations.

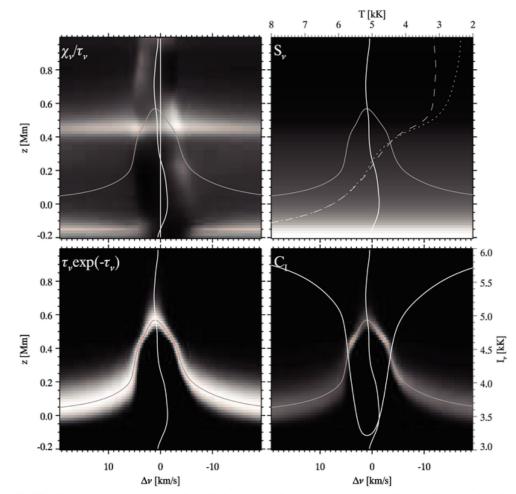
SIMULATION PROPERTIES



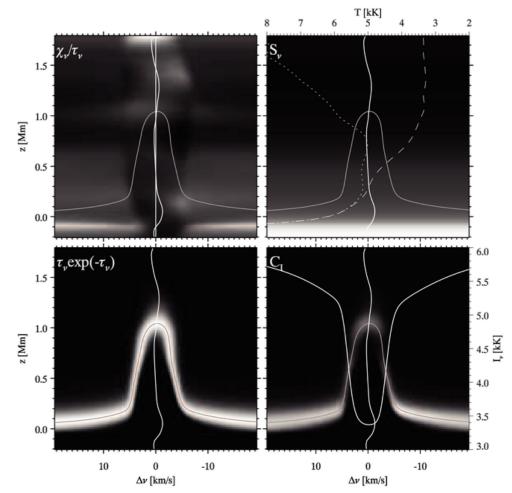
MAGNETIC CONCENTRATION



COOL CLOUD

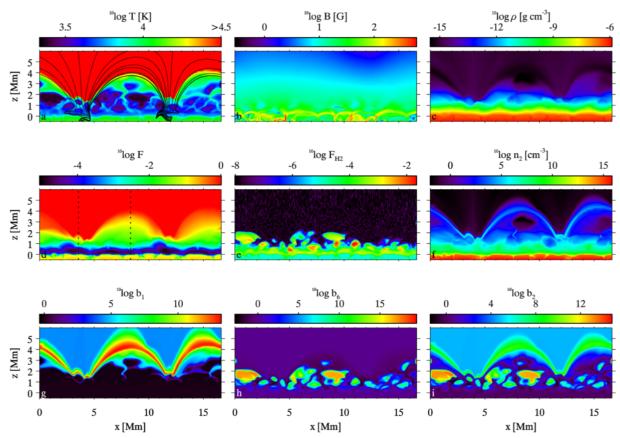


HOT FRONT



NON-E HYDROGEN IONIZATION

Leenaarts et al. 2007A&A...473..625L



time evolution along the two cuts in the 4th panel

SOLAR SPECTRUM FORMATION

Robert J. Rutten

[Sterrekundig Instituut Utrecht & Institutt for Teoretisk Astrofysikk Oslo]

Texts: R.J. Rutten, *"Radiative Transfer in Stellar Atmospheres"* (RTSA), my website
D. Mihalas, *"Stellar Atmospheres"*, 1970, 1978
G.B. Rybicki and A.P. Lightman, *"Radiative Processes in Astrophysics"*, 1979, 2004
M. Stix, *"The Sun"*, 1989, 2002/2004

examples of local, nonlocal, converted photons: white light corona coronium lines EUV corona EUV bright/dark [Zanstra & Bowen PN lines] radiative transfer basics: basic quantities constant S_{ν} plane-atmosphere RT Eddington-Barbier cartoons LTE 1D solar radiation escape: Planck continuous opacity LTE continuum **ITE** line cartoons Boltzmann-Saha LTE line equations solar ultraviolet spectrum VALIIIC temperature solar spectrum formation Ca II H&K versus Halpha NLTE 1D solar radiation escape: bb processes bb rates bb equilibria scattering solar radiation processes VAL3C continuum formation radiative cooling VAL3C radiation budget realistic line cartoon Na D1 Call 8542 versus Halpha **MHD-simulated essolar radiation escape:** Call H in 1D Na D1 in 3D non-E hydrogen in 2D RTSA rap summary:

BASIC RADIATIVE TRANSFER EQUATIONS

RTSA last page

specific intensity emissivity extinction coefficient source function radial optical depth plane-parallel transport $\mu dI_{\nu}/d\tau_{\nu} = I_{\nu} - S_{\nu}$ thin cloud thick emergent intensity Eddington-Barbier mean mean intensity photon destruction isothermal atmosphere

 $I_{\nu}(\vec{r}, \vec{l}, t)$ erg cm⁻² s⁻¹ Hz⁻¹ ster⁻¹ j_{ν} erg cm⁻³ s⁻¹ Hz⁻¹ ster⁻¹ $\alpha_{\nu} \operatorname{cm}^{-1} \quad \sigma_{\nu} \operatorname{cm}^{2} \operatorname{part}^{-1} \quad \kappa_{\nu} \operatorname{cm}^{2} \operatorname{q}^{-1}$ $S_{\nu} = \sum j_{\nu} / \sum \alpha_{\nu}$ $\tau_{\nu}(z_0) = \int_{z_0}^{\infty} \alpha_{\nu} \, \mathrm{d}z$ $I_{\mu} = I_0 + (S_{\mu} - I_0) \tau_{\mu}$ $I_{\nu}^{+}(0,\mu) = \int_{0}^{\infty} S_{\nu}(\tau_{\nu}) e^{-\tau_{\nu}/\mu} d\tau_{\nu}/\mu$ $I_{\mu}^{+}(0,\mu) \approx S_{\nu}(\tau_{\nu}=\mu)$ $\overline{J}_{\nu_0}^{\varphi} = \frac{1}{2} \int_0^{\infty} \int_{-1}^{+1} I_{\nu} \varphi(\nu - \nu_0) \,\mathrm{d}\mu \,\mathrm{d}\nu$ $\varepsilon_{\nu} = \alpha_{\nu}^{\rm a} / (\alpha_{\nu}^{\rm a} + \alpha_{\nu}^{\rm s}) \approx C_{\nu l} / (A_{\nu l} + C_{\nu l})$ complete redistribution $S_{\nu_0}^l = (1 - \varepsilon_{\nu_0}) \overline{J}_{\nu_0}^{\varphi} + \varepsilon_{\nu_0} B_{\nu_0}$ $S_{\nu_0}(0) = \sqrt{\varepsilon_{\nu_0}} B_{\nu_0}$