Introduction to English for Scientific Communication: Homework 1 Answers

In each sentence below, the place in which " \qquad " appears may require an article. If an article is needed, please write in the appropriate one. If none is needed, please write "none".

1. This appears to be equivalent to \qquad the ordinary second quantization formalism.
2. Synchronous activity in \qquad the brain seems to be generated and maintained by [none] Lthe interactions among \qquad [none] neurons.
\qquad quantity h has \qquad an interesting physical interpretation.
3. In [none]_Sec. 4, we reduce this set of equations to a__ system of [none] simpler equations.
4. In this case, $_$an operator of this kind does not exist.
5. We treat [none] v and d as [none]_continuous functions and therefore express them as $v(x, t)$ and $d(x, t)$.
6. We plot the coupling strength as a function of y in [none] Fig. 1(a).
7. This type of behaviour is seen with regard to the eigenvector $v 1$ or $v 2$.
8. The shading of the circle positioned at the centre of each cell indicates the population of that cell.
9. In each case, only [none]_ one pair of _[none]/the solutions is stable.
10. This is one of the key concepts in the field of [none] number theory.
11. In this paper, we consider an / the infinitesimal deformation of
a_regular arrangement of [none]/the particles.
12. As a result of the / [none]_ growth of these cells,_[none]_ new structures are formed.
13. We choose [none] $\hbar \omega_{D}$ as the energy unit.
14. The above results provide a clear understanding of the resonant behaviour.
15. Most of the change occurs in the first half of the operation.
16. We consider the simple equation $d \tau(x) / d x=f(x)$, where
[none] $f(x)$ is \qquad the second function appearing in [none] (3.4).
17. In this case it is most convenient to use__[none] cylindrical coordinates.
18. This treatment is analogous to the standard algebraic treatment of the harmonic oscillator.
19. One of the main results is given in the next section.
