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ABSTRACT

We performed 1.5-dimensional general relativistic hydrodynamic simulations with a Kerr metric to construct a
model for high-frequency quasi-periodic oscillations (QPOs) in microquasars. The simulations were performed
assuming an initial accretion disk without viscosity rotating around a Kerr black hole at sub-Keplerian velocity
(sub-Keplerian case), which induces various wave modes everywhere in the disk. We found that quasi-periodic
inward shock waves propagate from the accretion disk toward the black hole. The frequency of the shock
formation is about the maximum epicyclic frequency in the disk (�max), which depends on the rotation of the
black hole. In order to understand the mechanism of the shock formation, we also performed a simulation
assuming an initial linear perturbation injected at one point in the Keplerian disk (linear perturbation case) and
found an oscillation with frequency �� at the point where the perturbation injection occurred. To explain the
simulation result, we derived an analytic solution for the time evolution of the linear perturbation of physical
variables near the point of the perturbation injection and found that the time evolution of the oscillation can be
described well. From comparison of the result in the sub-Keplerian case with that of the linear perturbation case,
we found that the periodicity of the quasi-periodic shock formation in the sub-Keplerian case is due to a filtering
effect by the epicyclic frequency distribution in the disk, which acts on the wave propagation toward the black
hole. The only necessary condition for quasi-periodic shock formation is having a nonsteady character for the
disks, which can be a source of acoustic waves. The frequency of the shock formation (��max) is on the order of
the frequency of the high-frequency QPOs in microquasars and depends on the rotation of the black hole. Hence,
we can estimate the spin parameter (a) of a black hole candidate (BHC) in a microquasar by comparing the
frequency of the high-frequency QPO with �max. The spin parameters of the BHCs in microquasars are roughly
estimated to be a ¼ 0:345 � 0:345 for GRS 1915+105 and a ¼ 0:895 � 0:105 for GRO J1655�40.

Subject headinggs: accretion, accretion disks — black hole physics — hydrodynamics — methods: numerical —
relativity

1. INTRODUCTION

The time variations of the various physical quantities of
astrophysical objects reveal much about the nature of those
objects. The time variation of intensity is one of them. Quasi-
periodic oscillations (QPOs) are found from the analysis of
power spectra of the intensity variations. Since their discovery,
QPOs have been found in various astrophysical classes, such
as Galactic X-ray binaries (see van der Klis 2000 for a recent
review), X-ray novae (Rosen et al. 1995; Beardmore &
Osborne 1997; Morales-Rueda et al. 1999), X-ray pulsars (see
Takeshima et al. 1994 and references therein), microquasars
(Morgan et al. 1997; Cui et al. 1999; Markwardt et al. 1999;
Remillard et al. 1999a, 1999b; Sobczak et al. 1999), active

galactic nuclei (Fiore et al. 1989; Mittaz & Branduardi-
Raymont 1989), and cataclysmic variables (Patterson et al.
1977; Middleditch 1982). Moreover, the QPOs associated with
black hole candidates (BHCs) show high-frequency compo-
nents on the order of 100 Hz (Morgan et al. 1997; Homan et al.
1999, 2001; Remillard et al. 1999a, 1999b) and low-frequency
components on the order of 1 Hz (Morgan et al. 1997; Cui et al.
1999; Sobczak et al. 2000).

We can divide QPOs into two classes depending on whether
or not the central objects are BHCs. A black hole does not
have a solid surface, so the accretion disk around a black hole
is possibly crucial for the origin of QPOs. There are two
models of QPOs associated with BHCs, the Lense-Thirring
(Lense & Thirring 1918) model (Cui et al. 1998; Stella &
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Vietri 1998; Merloni et al. 1999; Stella et al. 1999) and the
disk-oscillation model (Kato & Fukue 1980; Kato 1989, 1990,
2001; Nowak et al. 1997; Nowak & Wagoner 1991, 1992;
Perez et al. 1997; Kato et al. 1998; Nowak & Lehr 1998;
Wagoner 1999). The Lense-Thirring model explains QPOs by
arguing that they are due to the precession of the disk in the
ergosphere around a Kerr black hole, which occurs when the
rotation axis of the disk is not parallel to that of the black hole.
On the other hand, in the disk-oscillation model, QPOs have
been explained by oscillations in the disk due to coherent
waves. In this model, acoustic waves are produced by the
viscosity of the disk, and they are trapped and amplified near
the inner edge. Then, a coherent wave is produced. The fre-
quency of the coherent wave becomes about the maximum
epicyclic frequency (�max) in the disk. Here we note that
QPOs in the objects associated with BHCs cannot be ex-
plained by a beat-frequency–modulated accretion model
(Alpar & Shaham 1985; Lamb et al. 1985), which has been
proposed for QPOs associated with neutron stars. This is be-
cause there is no solid surface for a black hole, and a magnetic
field line cannot be stably anchored.

Numerical studies of QPOs based on the disk-oscillation
model have been performed by Matsumoto et al. (1988, 1989),
Honma et al. (1992), and Chen & Taam (1995) using 1.5-
dimensional hydrodynamic simulations including disk viscos-
ity. They infer from their results that acoustic waves are trapped
and amplified near the inner edge of the disk as a result of disk
viscosity. In their simulations, coherent inward and outward
(shock) waves are produced. The frequencies of the waves are
��max, as predicted by the disk-oscillation model. Moreover,
2.5-dimensional hydrodynamic simulations have been per-
formed by Milsom & Taam (1997), and oscillations with fre-
quency ��max have been observed. In all their simulations,
disk viscosity is necessary for amplifying waves and producing
coherent inward and outward (shock) waves with frequency
��max, where �max is on the order of the frequencies in high-
frequency QPOs in microquasars (�100 Hz).

The above simulations were performed including the
� -viscosity of the disk assumed in the standard disk model
(Shakura & Sunyaev 1973). The � -viscosity is necessary for
the amplification of acoustic waves and oscillation with fre-
quency ��max in their simulation. Although it has been sup-
posed that the origin of � -viscosity is magnetic viscosity in
the disk (Balbus & Hawley 1991; Brandenburg et al. 1995;
Hawley et al. 1995; Matsumoto & Tajima 1995; Machida et al.
2000), it has not been resolved whether or not acoustic waves
are amplified by magnetic viscosity. We think the disk vis-
cosity is not crucial to producing oscillations in an accretion
disk, so we exclude the viscosity of the disk in our simu-
lations. In addition, the previous simulations were performed
with a pseudo-Newtonian potential (Paczyńsky & Wiita 1980).
The epicyclic frequency (�) distribution near the black hole
with a pseudo-Newtonian potential is quite different from
that with a fully general relativistic treatment (Fig. 1). More-
over, �max largely depends on the spin parameter of the black
hole, which directly relates to the rotation of the black hole.
Hence, if we want to investigate the mechanism of high-
frequency QPOs in detail, studying the oscillations in the disk,
a fully general relativistic treatment is necessary. Thus, to ex-
plain the mechanism of high-frequency QPOs, we performed
general relativistic hydrodynamic (GRHD) simulations under a
Kerr metric without disk viscosity.

In x 2 we show the models, basic equations, numerical
method, parameters, and initial and boundary conditions in our

simulations. The results of the simulations are shown in x 3.
Then we discuss the mechanism of the production of the quasi-
periodic inward shock waves and compare our result with the
high-frequency QPOs in microquasars in x 4.

2. METHOD

2.1. Model

We modeled a black hole and an accretion disk in order to
apply the oscillations in the disk to high-frequency QPOs in
microquasars, and performed 1.5-dimensional axially sym-
metric GRHD simulations in the equatorial plane of the disk
(Fig. 2). The 1.5 dimensions mean that the spatial coordinate
is in one dimension (radial direction), whereas the velocity has
two (radial and azimuthal) components. The metric is static,
determined only by the black hole (self-gravity of the disk is
neglected). We assume that the plasma is an adiabatic non-
viscous gas (the specific heat ratio is taken as � ¼ 5=3). We
examined four cases for the spin parameter of the black hole
(a � J=Jmax ¼ J=Mrgc ¼ cJ=GM 2, where J is the angular
momentum of the black hole and rg ¼ GM=c2): (1) a non-
rotating black hole (a ¼ 0:0) and black holes rotating at
(2) 90%, (3) 95%, and (4) 99% of the maximum rotation
(a ¼ 0:90, a ¼ 0:95, a ¼ 0:99). In this paper we show the
results of the simulations for the cases of a ¼ 0:0 and
a ¼ 0:99 in detail. Here we define x as the radius from a black

Fig. 1.—Distributions of the epicyclic frequency in an accretion disk
around a black hole. The horizontal axis shows the distance from the central
black hole in units of the Schwarzschild radius (rS), whereas the vertical axis
shows the frequency in units of the maximum epicyclic frequency in the disk
around a Schwarzschild black hole (�max;a¼ 0:0). The distributions of the
epicyclic frequencies in the disk in the general relativistic treatment (�) are
shown by solid curves (a ¼ 0:0, 1.0, where a is the spin parameter of the
black hole). It can be seen that the distribution and the maximum value of �
largely depend on the spin parameter of the black hole. In the nonrelativistic
limit, there is no finite maximum value, as shown by the dotted curve. The
dashed curve shows the case of a pseudo-Newtonian potential. There is also a
maximum value for the distribution of � in the pseudo-Newtonian case, which
is �1.6 times �max;a¼ 0:0. However, the distribution of � near the black hole is
quite different from that in the general relativistic treatment.
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hole in units of the Schwarzschild radius. In the a ¼ 0:0 case,
we performed the simulation in the region 1:2rS � x � 40:0rS
with 1500 mesh points (with the horizon of the black hole at
x ¼ 1:0rS). On the other hand, in the a ¼ 0:99 case, the sim-
ulation was performed in the region 0:59rS � x � 40:0rS with
2500 mesh points (with the horizon of the black hole at
x ’ 0:57rS). Mesh sizes increase exponentially with the dis-
tance from the black hole (tortoise coordinates).

2.2. Basic Equations

Our GRHD simulations were performed using basic equa-
tions in conservative form written in the 3+1 formalism
(Thorne et al. 1986). The code used in our simulation was
developed by Koide et al. (1998, 2000). The details of the
basic equations and numerical method in our simulations have
been described by Koide (2003).

The basic equations such as mass and energy-momentum
conservation laws written in covariant form are

9�(�U
�) ¼ 0; ð1Þ

9�T
�� ¼ 0; ð2Þ

respectively, where 9� is the covariant derivative, U � is
the four-velocity, and T�� is the general relativistic energy-
momentum tensor, given by

T�� ¼ pg�� þ (eint þ p)U�U �; ð3Þ

where �, p, and eint are the proper mass density, proper
pressure, and proper internal energy density [eint ¼ �c2 þ
p=(�� 1)]. We use subscripts or superscripts of Greek letters
to represent four-dimensional spacetime (�; � ¼ 0; 1; 2; 3)
and of Latin letters to represent three-dimensional space
(i; j ¼ 1; 2; 3).

The line element in Boyer-Lindquist (Boyer & Lindquist
1967) coordinates is written as

(ds)2 ¼ g�� dx
� dx�

¼ g00(c dt)
2 þ g03c dt d�

þ g11 dr
2 þ g22 d�

2 þ g33 d�
2; ð4Þ

where the elements of the metric g�� are given by

g00 � �h20; gii � h2i ;

gi0 ¼ g0i � �h2i !i=c; ð5Þ

and the other elements vanish. Here h0 ¼ (1� 2rgr=�)
1=2,

h1 ¼ �=�ð Þ1=2, h2 ¼ �1=2, h3 ¼ A=�ð Þ1=2 sin �, !1 ¼ !2 ¼ 0,
!3 ¼ 2cr 2g ar=A [rg ¼ 1=2ð ÞrS ¼ GM=c2, where rS is the
Schwarzschild radius], � ¼ r 2 � 2rgr þ (arg)

2, � ¼ r 2 þ
(arg)

2 cos2�, and A ¼ ½r 2þ (arg)
2�2 ��(arg)

2 sin2�. In this
metric, the lapse function is represented by

� ¼
ffiffiffiffiffiffiffiffi
��

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h20 þ

X3
i¼1

hi!i

c

� �2

vuut : ð6Þ

The radial position of the event horizon and the surface of the
ergosphere are given by rH ¼ rg½1þ (1� a2)1=2� and rergo ¼
rg½1þ (1� a2 cos2�)1=2�, respectively.

Using h� and !i, the line element (ds) can be rewritten as

dsð Þ2¼ g�� dx
� dx� ð7Þ

¼ � h20 c dtð Þ2þ
X3
i¼1

h2i dx i
� �2�2h2i !i dt dx

i
h i

ð8Þ

¼ � �2 c dtð Þ2þ
X3
i¼1

hi dx
i � c�i� dt

� �2
; ð9Þ

where the shift vector � i is defined by

� i ¼ hi!i

c�
: ð10Þ

From the basic equations written in covariant form, we now
rewrite the basic equations in the 3+1 formalism. In this for-
malism, we define the scalars in a comoving frame. The vec-
tors are defined with respect to a fiducial observer (FIDO),
who is at rest relative to the black hole. We assume that the
coordinates in the FIDO frame are given by (ct̂, x̂1, x̂2, x̂3), so
that the line element (ds) is written as (ds)2 ¼ �(c d t̂)2 þP3

i¼1 (dx̂
i)2.

The basic equations in the 3+1 formalism are written as

@D

@t
¼� 1

hih2h3

X3
i¼1

@

@x i
�h1h2h3

hi
D v̂i þ c� i
� �� �

; ð11Þ

@P̂i

@t
¼� 1

h1h2h3

X3
j¼1

@

@x j

�h1h2h3
hj

T̂ ij þ c� jP̂ i
� �� �

� 	þ Dc 2
� � 1

hj

@�

@x i
þ � f icurve �

X3
j¼1

P̂ j
ji; ð12Þ

Fig. 2.—Schematic view of our model. The filled circle at the left indicates the black hole, whereas the dark-gray area at the right indicates the accretion disk in
the region 3:0 � x=rS � 40:0 (nonrotating black hole case: a ¼ 0:0) or 0:73 � x=rS � 40:0 (rapidly rotating black hole case: a ¼ 0:99). The region between the black
hole and the disk is filled with the disk corona, indicated by the light-gray area. There are 1500 mesh points in the simulation area of 1:2 � x=rS � 40:0 in the
a ¼ 0:0 case, whereas 2500 mesh points are included in the simulation area of 0:59 � x=rS � 40:0 in the a ¼ 0:99 case. The initial rotation of the disk is taken as
sub-Keplerian: v̂�=V̂K ¼ 0:95. The inner and outer boundaries are assumed to be free boundaries.
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@	

@t
¼� 1

h1h2h3

X3
i¼1

@

@xi
�h1h2h3

hi
c2 P̂ i � Dv̂ i þ � i

c
	

� �� �

�
X3
i¼1

c2P̂ i 1

hi

@�

@xi
�
X
i; j

T̂ ij
ji; ð13Þ

where f icurve �
P3

j¼1 (GijT̂
ij � GjiT̂

jj),Gij � �(1=hihj)(@hi=@x
j),

and 
ij � (hi=hj)(@!i=@x
j). Moreover D, P̂ i, T̂ ij, and 	 are the

mass density, energy flux density, momentum flux density, and
energy density corrected by rest-mass energy in the FIDO frame,
respectively. They are represented as

D ¼ ��; ð14Þ

P̂i ¼ 1

c2
H�2v̂ i; ð15Þ

T̂ ij ¼ p�ij þ H

c2
�2v̂iv̂ j; ð16Þ

	 ¼ H� 2 � p� Dc2; ð17Þ

where �¼ 1=½1þ
P3

i¼1 (dx̂
i=c dt)2�1=2, H ¼ �c2þ�p=(��1) ¼

(eint þ p), and �ij are the Lorentz factor, the specific relativistic
enthalpy, and Kronecker’s �-symbol, respectively. Hereafter a
hat over a quantity denotes that it is evaluated in the FIDO
frame.

2.3. Numerical Method

We have used a simplified total variation diminishing
method, which was developed by Davis (1984) for violent
phenomena such as shock waves. This method is qualitatively
similar to the Lax-Wendroff method with a diffusion term. In
order to integrate the time-dependent conservation laws, we
have to calculate neither eigenvectors nor eigenvalues of the
coefficient matrix of the linearized GRHD equations. The only
procedure necessary is to calculate the maximum speed of the
waves.

During the time evolution of the differential equations, we
obtain the quantities D, P̂, and 	 at each time step directly. In
order to proceed to the next time step, we have to calculate �,
v̂, and p from the conserved quantities D, P̂, and 	. Therefore,
we must solve the nonlinear algebraic equation

X (X þ 2)(�RX þ �R� d )2 ¼ �X 2 þ 2�X þ 1
� �2

f 2; ð18Þ

where X � � � 1, R ¼ Dþ 	=c2, d ¼ (�� 1)D, and f ¼ P̂=c.
This equation is the same as that derived by Duncan & Hughes
(1994). The equation is solved at each mesh point by using the
Newton-Raphson iteration method. Thus, we can easily obtain
v̂ and p from X, �, D, P̂, and 	.

2.4. Parameters

There are four parameters in our problem:

�d
�c

� proper mass density of the accretion disk

proper mass density of the corona
; ð19Þ

v̂�

V̂K

� azimuthal velocity of the accretion disk

Keplerian velocity
; ð20Þ

a � J

Jmax

¼ J

Mrgc
¼ c2J

GM 2

¼ spin parameter of the black hole; ð21Þ

Eth �
thermal energy

gravitational energy
¼ C 2

s

V̂ 2
K

; ð22Þ

where Cs [�c(�p=H )1=2] and V̂K represent the proper sound
speed and the Keplerian velocity, respectively. The Keplerian
velocity is written as

V̂K ¼ c
A

�1=2 r3 � r3ga
2

� 	 �
ffiffiffiffiffi
rg

r

r
� a

rg

r

� 	2
� �

� c
h3!3

c�
; ð23Þ

where the positive and negative signs correspond to orbits that
corotate and counterrotate, respectively, with the black hole.
In our simulations, only corotating cases are treated. Under a
Schwarzschild metric, V̂K ¼ c=½2(r=rS � 1)�1=2.

2.5. Initial and Boundary Conditions

Initial conditions are as follows: In the a ¼ 0:0 case, we
assume that the region between x ¼ 3:0rS and 40.0rS (the
outer boundary) is filled with an accretion disk. On the other
hand, in the a ¼ 0:99 case, there is an accretion disk in the
region between x ¼ 0:73rS and 40.0rS. In both cases the inner
edge of the disk is determined from the marginally stable
orbit. The azimuthal velocity of the disk is taken to be a sub-
Keplerian velocity (v̂�=V̂K ¼ 0:95) in both cases. If the disk is
rotating at the Keplerian velocity, it is steady and never falls
to the black hole without viscosity. On the other hand, if the
disk rotation is sub-Keplerian, the disk falls in a dynamical
timescale, which gives a finite-amplitude disturbance to the
disk. We put the disk corona in the region between the inner
boundary of the simulation area and the inner edge of the disk.
The distributions of the proper mass density, proper pressure,
and radial velocity in the FIDO frame in the corona are de-
termined from the Bondi solution. This is not the exact Bondi
solution, but the radial velocity in the FIDO frame near the
black hole is always supersonic in both cases. Hence, the
information cannot be transported from the black hole to
the simulation area. The proper mass density in the disk is
taken as �d=�c ¼ 1000 (a ¼ 0:0) and �d=�c ¼ 100 (a ¼ 0:99).
The proper pressure in the disk is determined to be balanced
with the coronal pressure. Hence, the ratio of the temperature
distribution in the disk to that of the corona is 0.001 (a ¼ 0:0)
and 0.01 (a ¼ 0:99). The distribution of Eth is not uniform,
where Eth at the inner edge of the disk is taken as Eth ¼ 0:024
(a ¼ 0:0) and Eth ¼ 0:13 (a ¼ 0:99).
As for boundary conditions, the inner and outer boundaries

in the radial direction are assumed to be free boundaries, so
that the differentiation of physical variables at the boundaries
does not change with time. This condition means that waves
and fluids can pass through each boundary freely.

3. RESULTS

From the results of the simulations, we obtained quasi-
periodic inward shock waves. First we show the snapshots
of physical quantities in the a ¼ 0:0 case (Fig. 3). Figure 3a
shows the initial conditions. There is an accretion disk in
the region between x ¼ 3:0rS and 40.0rS rotating at a sub-
Keplerian velocity (v̂�=V̂K ¼ 0:95). After the disk falls to the
black hole, it becomes a Keplerian disk at t ¼ 67S (S � rS=c),
as seen in Figure 3b. In Figure 3c we can see an inwardly
propagating shock front at x ¼ 2:6rS. After this time, the shock
wave propagates toward the black hole, and other inward
shock waves are generated and propagate quasi-periodically
toward the black hole.
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To get an overview of the propagation of shock waves, we
show the time evolution of the proper pressure in Figure 4. We
can see that the inward shock waves are generated and prop-
agate from the disk toward the black hole quasi-periodically.

Figure 5 shows the time variation of the proper pressure
at x ¼ 2:5rS. The passage of shock waves can be seen. The
strong shock waves are generated quasi-periodically with a

period of ’149S . The rotation period at the inner edge of the
disk (x ¼ 3:0rS) is ’46.2S for comparison.

In Figure 6 we show the normalized power spectral density
(PSD) of the radial velocity v̂r at x ¼ 2:5rS. A characteristic
feature can be seen at 6:70 ; 10�3�1

S , which corresponds to a
frequency of �(149S)

�1. Moreover, several higher harmonics
can also be seen.

Fig. 3.—Snapshots of the spatial distribution of physical quantities in the a ¼ 0:0 case. The horizontal axis shows the distance from the black hole in units of rS.
The physical quantities are at (a) t ¼ 0S (S � rS=c), (b) 67S, and (c) 180S. In the top panels, the solid and dashed curves show the proper mass density (�) and
proper pressure ( p) (on a logarithmic scale), respectively. In the bottom panels, the solid, dashed, and dotted curves show the radial velocity (v̂r), the azimuthal
velocity (v̂�), and the Keplerian velocity (V̂K) in the FIDO frame in units of light speed on a linear scale, respectively. In (a) the disk, from x ¼ 3:0rS to 40.0rS, is
rotating at sub-Keplerian velocity initially: v̂�=V̂K ¼ 0:95. In (b) we can see that the azimuthal velocity in the FIDO frame becomes the Keplerian velocity through
the supply of angular momentum from the outer to the inner region of the disk. In (c), at about t ¼ 180S an inward shock wave is formed, and the shock front can be
seen at x ¼ 2:6rS.

Fig. 4.—Detailed time evolution of the propagation of shock waves in the
a ¼ 0:0 (Schwarzschild black hole) case. Proper pressures are plotted as a
function of the distance from the black hole in units of rS (on a logarithmic
scale), stacked with time increasing upward uniformly by 10S. Several in-
ward shock waves and many wavy structures are generated and propagate
toward the black hole. The distribution of proper pressure along the arrows
and dashed line is shown in Fig. 5.

Fig. 5.—Time variation of the proper pressure at x ¼ 2:5rS in the a ¼ 0:0
case. The horizontal axis shows time in units of S on a linear scale, whereas
the vertical axis shows the proper pressure on a logarithmic scale. This figure
shows the distribution along the arrows and dashed line in Fig. 4. The char-
acteristic period of passage of large shock waves is �149S, and numerous
small variations can be seen.
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Next we discuss the results in the a ¼ 0:99 case. Figure 7
shows the snapshots of physical variables. The initial con-
ditions are shown in Figure 7a. The region between x ¼
0:73rS and 40rS is occupied by the accretion disk, and the
azimuthal velocity of the disk is taken to be v̂� ¼ 0:95V̂K. The
disk becomes Keplerian in Figure 7b. Figure 7c shows the in-
wardly propagating shock front at x ’ 0:88rS. Several shock
waves are generated and propagate toward the black hole quasi-
periodically after this time.
In order to get an overview of the quasi-periodic generation

and propagation of inward shock waves, we show the time
evolution of the proper pressure in Figure 8. The inward shock
waves are generated and propagate toward the black hole
quasi-periodically.
Figure 9 shows the time variation of the proper pressure

at x ¼ 0:65rS. The period of passage of the shock waves is
’44S. The rotation period of the disk at the inner edge of the
disk (x ¼ 0:73rS) is ’5.5S for comparison.
From the normalized PSD of v̂r at x ¼ 0:65rS (Fig. 10), we

can see that there are many characteristic frequencies. The
lowest frequency is 2:26 ; 10�2�1

S , which corresponds to a
frequency of�(44S)

�1. Its higher harmonics can also be seen.
In order to confirm that the characteristic frequency does not

depend on the parameter v̂�=V̂K, we performed the simulations
in other sub-Keplerian cases such as v̂� ¼ (0:75; 0:85; 0:9)V̂K

for both a ¼ 0:0 and a ¼ 0:99. In all cases, the characteristic
frequencies are not different from that of the v̂�=V̂K ¼ 0:95
case. We confirm that no shock wave is generated in the
Keplerian case (v̂�=V̂K ¼ 1:0) for a ¼ 0:0 and 0.99.
For v̂�=V̂K ¼ 0:65, 0.75, and 0.85, another type of shock

wave is also generated in addition to the quasi-periodic inward
shock waves. This type of shock wave is generated only once
and propagates outward. In the v̂�=V̂K ¼ 0:95 case, this wave
cannot be clearly seen because accretion flow is weak. The
outward shock wave is caused by the effects of the centrifugal
force, and the physical mechanism driving the shock is the

Fig. 6.—Normalized PSD of the radial velocity v̂r in the FIDO frame at
x ¼ 2:5rS in the a ¼ 0:0 case. The horizontal axis shows the frequency in units
of �1

S on a logarithmic scale, whereas the vertical axis shows on a loga-
rithmic scale the PSD of the radial velocity in the FIDO frame at x ¼ 2:5rS,
normalized by total power. There is a characteristic frequency at �6:70 ;
10�3�1

S , which corresponds to a period of �(149S)
�1 (see Fig. 5). Several of

its higher harmonics can also be seen. The bin width of the frequency is
1:12 ; 10�3�1

S .

Fig. 7.—Snapshots of the spatial distribution of the physical quantities of the a ¼ 0:99 (rapidly rotating Kerr black hole) case. The horizontal axis shows the
distance from the black hole in units of rS . The physical quantities are at (a) t ¼ 0S , (b) 20S, and (c) 56S . In the top panels, the solid and dashed curves show
proper mass density (�) and proper pressure ( p) (on a logarithmic scale), respectively. In the bottom panels, the solid, dashed, and dotted curves show the radial
velocity (v̂r), the azimuthal velocity (v̂�), and the Keplerian velocity (V̂K) in the FIDO frame in units of the speed of light on a linear scale, respectively. In (a) the
disk, from x ¼ 0:73rS to 40.0rS , is rotating at sub-Keplerian velocity initially: v̂�=V̂K ¼ 0:95. In (b) the azimuthal velocity in the FIDO frame becomes the Keplerian
velocity through the supply of angular momentum from the outer to the inner region of the disk. In (c), at about t ¼ 56S an inward shock wave is formed, and the
shock front can be seen at x ¼ 0:88rS.
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same as that producing the shock accelerating the gas pressure
driven jet (Koide et al. 1998, 1999, 2000).

4. DISCUSSION

The lowest characteristic frequency for each spin parameter
is ��max=2� (�max is the maximum epicyclic frequency in
the disk), which depends on the rotation of the black hole.
Before discussing the mechanism of the production of the
quasi-periodic inward shock waves, we explain the epicyclic
frequency.

4.1. Epicyclic Frequency

The radial oscillation of orbital motion is known as epicy-
clic motion, which occurs when a radial perturbation is given
to a point mass rotating around a massive object in a circular
orbit. The epicyclic frequency (�) distribution in an accretion
disk around a rotating black hole as a function of radius (x) is
given as (Okazaki et al. 1987)

� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3rS=xþ 8a(rS=2x)

3=2 � 3a2(rS=2x)
2

q
1þ a(rS=2x)

3=2
; ð24Þ

where � [=(GM=x3)1=2] is the Keplerian angular fre-
quency around a Schwarzschild black hole. In the a ¼ 0:0

Fig. 9.—Time variation of the proper pressure at x ¼ 0:65rS in the a ¼ 0:99
case. The horizontal axis shows time in units of S on a linear scale, whereas
the vertical axis shows the proper pressure on a logarithmic scale. This is the
distribution along the arrows and dashed line in Fig. 8. The characteristic
period of the passage of shock waves is �44S.

Fig. 10.—Normalized PSD of the radial velocity v̂r in the FIDO frame at
x ¼ 0:65rS in the a ¼ 0:99 case. The horizontal axis shows frequency in units
of �1

S on a logarithmic scale, whereas the vertical axis shows on a logarithmic
scale the PSD of the radial velocity in the FIDO frame at x ¼ 0:65rS, nor-
malized by total power. The characteristic feature can be seen at 2:26 ;
10�2�1

S . We can also see several of its higher harmonics. The lowest fre-
quency of the harmonics is comparable to (44S)

�1 (see Fig. 9). The bin width
of the frequency is 2:51 ; 10�3�1

S .

Fig. 8.—Detailed time evolution of the propagation of shock waves in the
a ¼ 0:99 case. The proper pressures are plotted as a function of the distance
from the black hole in units of rS (on a logarithmic scale), stacked with time
uniformly increasing upward by 5S. Several inward shock waves are gen-
erated and propagate toward the black hole. The distribution of the proper
pressure along the arrows and dashed line is shown in Fig. 9.
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(Schwarzschild black hole) case, � is simplified as � ¼
(1�3rg=x)1=2�. The dependence of � on the spin parameter
of the black hole, a, is shown in Figure 11. The larger the
spin parameter of the black hole is, the higher the maximum
value of � becomes. In the nonrelativistic limit, � is equal to
the Keplerian angular frequency, and there is no finite maxi-
mum value in the �-distribution.

4.2. Shock Formation Mechanisms

In order to investigate the formation mechanism of quasi-
periodic inward shock waves, we studied the wave propaga-
tion when a linear perturbation is injected into an accretion
disk, and then compared it with quasi-periodic inward shock
formation.

4.2.1. Linear Perturbation Case

We discuss the wave propagation in the disk from the point
of view of the dispersion relation of acoustic waves to see how
the wave propagation is induced by the disturbances. When
we assume axial symmetry and one-dimensional propagation
in the equatorial plane of the accretion disk around a rotating
black hole, the dispersion relation is written as

!2 ¼ �2 þ k 2V 2
s ; ð25Þ

where ! and k are the frequency of the induced wave and the
wavenumber of the perturbation, respectively, and Vs is the
effective speed and is related to the sound speed by

V 2
s ¼ C2

s

h20 þ h3!3=cð Þ2

h21 1þ
P3

i¼1 v̂ i=cð Þ2
h i

; 1� Cs

c

� �2
h3!3=c� h3�=cð Þ2

h3!3=cð Þ2�h20

" #�1

: ð26Þ

The derivation of the dispersion relation (25) is given in
Appendix A. Figure 12 shows the dispersion relation at a fixed
point in the disk. The slope of the solid curve gives the group
velocity, and the maximum group velocity is equal to Vs . The
larger the wavenumber k of the perturbation is, the faster the
group velocity of the induced wave becomes. The minimum
frequency of the induced wave is �, and its group velocity is
equal to zero. Therefore, when the frequency of the wave
is almost equal to �, the propagation speed of the wave is
very small, and the time necessary for the waves to propagate
is the longest among the permitted waves. Hence, when var-
ious modes are injected by the perturbation, the wave with
frequency �� becomes dominant with time. This behavior

Fig. 11.—Dependence of the epicyclic frequency on a, the spin parameter
of the black hole. In this figure, only a� 0 (corotating) cases, which means
that the direction of the rotation of the accretion disk is the same as that of the
black hole, are shown. The horizontal axis shows the distance from the black
hole in units of rS , whereas the vertical axis shows the frequency of the waves
in units of the maximum epicyclic frequency in the a ¼ 0:0 case. In the
nonrotating black hole case (a ¼ 0:0; lower solid curve), there is a maximum
epicyclic frequency at x ¼ 4:0rS. The larger a is, the higher the maximum
epicyclic frequency becomes. When a ¼ 0:99 (upper solid curve), the maxi-
mum epicyclic frequency is �3.34 times that in the a ¼ 0:0 case, and the
radius where epicyclic frequency becomes the maximum is x ’ 1:28rS. The
a ¼ 1:0 case (dashed curve) is also shown, and the maximum epicyclic fre-
quency is �3.47 times that in the a ¼ 0:0 case.

Fig. 12.—Dispersion relation of acoustic waves in an accretion disk, where
!, k, �, and Vs indicate the frequency of induced waves, the wavenumber of
perturbation, the epicyclic frequency in the disk, and the speed related to the
sound speed, respectively. The solid curve represents the dispersion relation
!=� ¼ ½1þ (kVs=�)

2�1=2. The slope of the curve of the dispersion relation is
the group velocity. Hence, the lower !=� becomes, the smaller the group
velocity of the induced wave is. Therefore, the group velocity of the induced
wave with frequency � is equal to zero. The minimum frequency of ! is �.
Waves with frequency lower than � are forbidden. The dashed line shows the
asymptotic line of the dispersion relation in the limit of k=�! 1 , and the
slope of the line gives the maximum group velocity, which is equal to Vs .

AOKI ET AL.904 Vol. 610



is similar to that of vertical acoustic wave propagation in the
atmosphere (wake), which has been discussed by Lamb (1932;
see also Suematsu et al. 1982; Kalkofen et al. 1994).

In order to show that the quasi-periodic inward shock for-
mation can be explained by analysis based on linear theory,
we performed another simulation with a linear perturbation.
We call this simulation the ‘‘linear perturbation case.’’ On the
other hand, we call the simulations shown in x 3 the ‘‘sub-
Keplerian case.’’ The difference in the initial conditions in the
linear perturbation case from those in the sub-Keplerian case
are as follows: (1) there are 9000 mesh points in the region
between x ¼ 3:1rS and 40.0rS with uniform mesh sizes; (2) the
simulation region is filled only by an accretion disk; (3) the
proper mass density and proper pressure are assumed to be
constant in the simulation region, values of which are deter-
mined so that the proper sound speed is equal to that at
x ¼ 4:0rS in the sub-Keplerian case: Cs ¼ 0:18c; (4) the ac-
cretion disk is rotating at the Keplerian velocity (v̂�=V̂K ¼1:0);
(5) the black hole is not rotating (a ¼ 0:0); (6) a perturbation
is injected into the radial velocity of 1% of the proper sound
speed in the FIDO frame at x ¼ 7:1rS (only one mesh point),
which induces various wave modes. The position of the per-
turbation injection is determined so that the induced waves
propagate through the point of �max (x ¼ 4:0rS) toward the
inner region of the disk. In the linear perturbation case, only
small perturbations are injected in a steady state disk. Hence,
the physical quantities of the disk such as proper mass density,
proper pressure, and rotation of the disk do not vary largely
with time.

Figure 13 shows the time variation of the radial velocity v̂r
at x ¼ 7:1rS in the linear perturbation case. The solid curve
indicates the result of the simulation, whereas the dashed
curve shows the analytic solution derived from linear theory.
The result from the simulation is in very good agreement with
the analytic solution. The deviation of the result of the sim-
ulation from that of the analytic solution after t � 400S is
due to the mixing with reflected waves at the inner boundary
of the simulation area. Here we show the explicit form of
the analytic solution. When the perturbation is injected into the
radial velocity at one point in the form of a delta function, the
time variation of the radial velocity v̂r derived from linear
analysis is written as (see Appendix A)

v̂r(x; t) ¼� F0

2

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � (x� x0)=Vs (x0)½ �2

q

; J1 �(x0)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x� x0

Vs (x0)

� �2s0
@

1
A; ð27Þ

where x0 , F0 , and J1 represent the position where the pertur-
bation is injected, the normalization factor of v̂r , and the
Bessel function, respectively; Vs (x0) and �(x0) are the effective
speed and epicyclic frequency at x ¼ x0, respectively. Here
this analytic solution can be applied only in the region where
�(x) and Vs (x) are not very different from those at the point
of the perturbation injection [�(x0), Vs (x0)]. The time variation
of v̂r shown in Figure 13 is obtained by setting x ¼ x0 in
equation (27):

v̂r(x0; t) ¼ � F0

2
J1 �(x0)tð Þ: ð28Þ

We can see from equation (28) that the time variation of v̂r at
the point of the perturbation injection is determined by �(x0).

In fact, from the normalized PSD of v̂r observed in the
simulation, the characteristic frequency in the PSD at the point
of the perturbation injection is �5:07 ; 10�3�1

S [denoted by
(1) in Fig. 14]. This frequency is almost equal to �=2� at
x ¼ 7:1rS: 4:49 ; 10�3�1

S (the characteristic frequency is
larger than �=2� at x ¼ 7:1rS by 1.8%, taking into account the
error due to the bin width in the normalized PSD), which is
predicted from the linear theory as we mentioned above. The
factor 2� in �=2� is the normalization factor of the frequency
in the PSD. After the perturbation injection, the induced
waves propagate toward the inner region of the disk and reach
x ¼ 4:0rS, where � becomes the maximum value (�max). The
characteristic frequency in the PSD at x ¼ 4:0rS [denoted by
(2) in Fig. 14] becomes �8:13 ; 10�3�1

S . This frequency is
nearly equal to �max=2�: 7:03 ; 10�3�1

S (the characteristic fre-
quency is larger than �max=2� by 8.3%, taking into account the
error due to the bin width in the normalized PSD). Then, the
induced waves reach the inner region of the disk (x ¼ 3:2rS).
Although �=2� at x ¼ 3:2rS is �4:90 ; 10�3�1

S , the charac-
teristic frequency in the PSD at this point [denoted by (3) in
Fig. 14] is the same as that at x ¼ 4:0rS. Hence, the charac-
teristic frequency in the PSD is much higher than �=2� at
x ¼ 3:2rS. Here we note that the waves with frequency lower
than �max are cut off.

Therefore, the nonuniform finite distribution of � in the disk
acts as a filter. That is, if the frequency of a wave is lower than
�max, the wave can reach neither the inner region of the disk nor
the vicinity of the black hole. Hence, we can explain in Figure 15

Fig. 13.—Comparison of the time variation of the radial velocity in the
FIDO frame from the simulation in the linear perturbation case with that from
the analytic solution. The horizontal axis shows time in units of S , whereas
the vertical axis shows the velocity in units of the speed of light. The time
variation of the radial velocity in the FIDO frame at the point of the pertur-
bation injection (x ¼ 7:1rS) is shown by the solid curve. The dashed curve
shows the analytic solution (eq. [28]). Hence, the result of the simulation is in
good agreement with that from the analytic solution. The deviation of the
simulation result from that of the analytic solution after t � 400S is due to
mixing with the reflected waves at the inner boundary of the simulation area
(x ¼ 3:1rS).
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the wave propagation in the system of a Schwarzschild black
hole and an accretion disk. In this figure, the solid curve
denotes � in the disk in the a ¼ 0:0 (Schwarzschild black hole)
case, whereas the dashed curve represents � in the nonrela-
tivistic limit. The lowest frequency of the wave induced by
perturbations becomes � from the dispersion relation (see
Fig. 12). Hence, a wave induced in the region outside the
radius where � becomes �max in the disk can propagate toward
the black hole when its frequency is larger than �max. Morever,
among the induced waves a wave with frequency ��max

becomes dominant in both the inner region of the disk and the
vicinity of the black hole, which is explained by the dispersion
relation. Therefore, a coherent wave is produced near the black
hole by this filtering effect on the wave propagation. The fre-
quency of the coherent wave becomes ��max. In the nonrela-
tivistic limit, � becomes infinite near a central object, and no
wave with a finite frequency can reach the central object.

4.2.2. Sub-Keplerian Case

We showed why the frequency of the oscillation in the vi-
cinity of the black hole becomes ��max in the linear pertur-

bation case. Figure 16 shows the comparison of the time
variation of the radial velocity v̂r at a fixed point in the linear
perturbation case with that in the sub-Keplerian case. We can
see that the global shape of the time variation of v̂r in the linear
perturbation case is similar to that in the sub-Keplerian case.
The period of the time variation of v̂r at x ¼ 3:4rS in the linear
perturbation case is�131S, which is near the period 2�=�max:
142S. (It is slightly smaller than the period 2�=�max by 7.7%.)
As for the sub-Keplerian case, the period of the time variation
of v̂r at x ¼ 3:4rS is �149S. It is within the error range of the
period 2�=�max. Therefore, both the period of the oscillation in
the linear perturbation case and that of the quasi-periodic in-
ward shock formation in the sub-Keplerian case are near the
period 2�=�max in the disk.
In the sub-Keplerian case, the initial disturbance is injected

everywhere in the disk, whereas in the linear perturbation case
the initial perturbation is injected only at one point. Hence, the
sub-Keplerian case can be regarded as the superposition of
linear perturbation cases whose perturbations are injected
everywhere in the disk. As we discussed above, the charac-
teristic period of the oscillation in the vicinity of the black hole
in the linear perturbation case becomes �2�=�max because of
the filtering effect by the nonuniform finite epicyclic frequency
distribution in the disk. In the sub-Keplerian case, the initial
disturbances are injected not only in the outer region of the disk
but also in the inner region of the disk. However, the effect of
the induced waves in the region between the inner edge of the
disk and the radius where � becomes �max is probably small,
because this region is very narrow relative to the outer region
of the disk. Therefore, the induced waves in the inner region
of the disk would not affect the characteristic period in the sub-
Keplerian case. In fact, the characteristic period at x ¼ 2:5rS in
the sub-Keplerian case becomes the period �2�=�max in spite
of the fact that the region is interior to the radius where �
becomes �max. Hence, in the sub-Keplerian case, the period of
the quasi-periodic inward shock formation is also determined
by the filtering effect due to the nonuniform finite epicyclic
frequency distribution.
The initial disturbance in the sub-Keplerian case is very

large, so that the amplitude of induced waves becomes large and
nonlinear effects become important. The physical conditions
near the black hole also affect the shock formation. Material
near a black hole is swallowed into the hole. Therefore, the
proper mass density becomes smaller in the vicinity of the black
hole. The energy flux of an acoustic wave is approximately
conserved during its propagation toward the black hole, so that
the velocity amplitude of a wave becomes large when the wave
comes into the low-density region near the black hole. If the
velocity amplitude exceeds the proper sound speed, nonlinear
effects become important, and waves evolve to shock waves.
Consequently, we conclude that the period of the quasi-

periodic inward shock formation is also determined by the
filtering effect due to the nonuniform finite epicyclic frequency
distribution in the sub-Keplerian case. The differences of
amplitude and detailed shape between the linear perturbation
case and the sub-Keplerian case are due to the superposition
and nonlinear effects.
As for the a ¼ 0:99 case, the characteristic frequency of the

quasi-periodic inward shock formation is �2:26 ; 10�2�1
S .

This frequency is within the error range of the frequency �max:
2:35 ; 10�2�1

S . Hence, in the a ¼ 0:99 case the frequency
of the quasi-periodic inward shock formation also becomes
��max=2�. To confirm this behavior, we have examined the
cases of a ¼ 0:90 and a ¼ 0:95. The characteristic frequency

Fig. 14.—Normalized PSD of the radial velocity in the FIDO frame at
several fixed points in the linear perturbation case. The horizontal axis shows
the frequency in units of �1

S on a logarithmic scale, whereas the vertical axis
shows on a logarithmic scale the PSD of the radial velocity in the FIDO frame,
normalized by the total power. The dashed, dotted, and solid curves represent
the normalized PSD of the radial velocity in the FIDO frame at x ¼ 7:1rS ,
4.0rS, and 3.2rS, respectively. The perturbation is injected at x ¼ 7:1rS ini-
tially. The characteristic frequency at x ¼ 7:1rS is �5:07 ; 10�3�1

S . This is
almost equal to �=2� at this point. The induced waves propagate toward
x ¼ 4:0rS, where � becomes �max. The characteristic frequency at x ¼ 4:0rS
is �8:13 ; 10�3�1

S , nearly equal to �=2� here. Then the induced waves
go through to the inner region of the disk (x ¼ 3:2rS), where �=2� is
�4:90 ; 10�3�1

S . However the characteristic frequency at this point is the
same as that at x ¼ 4:0rS (�max=2�) and much higher than �=2� at x ¼ 3:2rS.
The waves with frequencies lower than �max are cut off.
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of the quasi-periodic inward shock formation in the a ¼ 0:90
case is 1:99 ; 10�2�1

S . This is within the error range of
�max=2� in the a ¼ 0:90 case: 1:84 ; 10�2�1

S . As for the a ¼
0:95 case, the characteristic frequency of the quasi-periodic
inward shock formation is 1:94 ; 10�2�1

S . This is also within
the error range of �max=2� in the a ¼ 0:95 case: 2:08 ;
10�2�1

S . Therefore, the characteristic frequency of the quasi-

periodic inward shock formation can be explained by the fil-
tering effect of the nonuniform finite epicyclic frequency
distribution in the disk. The frequency of the shock formation
becomes ��max=2� in the disk around a Kerr black hole.

The results of our simulations are not caused by wave
trapping, which is predicted by linear theory in the disk-
oscillation model (Kato & Fukue 1980; Kato 1989, 1990,
2001; Nowak et al. 1997; Perez et al. 1997; Kato et al. 1998;
Nowak & Lehr 1998; Wagoner 1999). In our result, the co-
herent waves or quasi-periodic inward shock waves are pro-
duced by the filtering effect due to the nonuniform distribution
of the epicyclic frequency in the disk. We do not need the
viscosity in the disk, which was essential to exciting oscil-
lations in previous numerical simulations, such as the ones by
Matsumoto et al. (1988, 1989), Honma et al. (1992), and Chen
& Taam (1995) in one dimension and Milsom & Taam (1997)
in two dimensions. The only necessary condition is a non-
steady character for the disk. Such turbulent disks are indeed
predicted by magnetohydrodynamic (MHD) simulations as a
result of the magnetorotational instability in accretion disks in
two dimensions (Balbus & Hawley 1991, 1992; Hawley &
Balbus 1991, 1992; Tagger et al. 1992; Tout & Pringle 1992;
Vishniac & Diamond 1992; Stone & Norman1994; Matsumoto
et al. 1996) and in three dimensions (Brandenburg et al. 1995;
Hawley et al. 1995; Matsumoto & Tajima 1995; Stone et al.
1996; Matsumoto 1999; Hawley 2000; Machida et al. 2000;
Machida & Matsumoto 2003).

In our simulations, the amplitude of the quasi-periodic in-
ward shock waves decreases with time. In order to have long-
lasting quasi-periodic inward shock formation, we must set
the condition of the sub-Keplerian rotation into the disk re-
peatedly. This condition can be attained by intermittent mass
accretion, which has been found in the 2.5-dimensional resis-
tive MHD simulations of astrophysical jets by Kuwabara
et al. (2000). They showed that mass accretion and jet for-
mation occur intermittently because of the magnetorotational

Fig. 15.—Wave propagation in the system of a Schwarzschild black hole and an accretion disk. The horizontal axis shows the distance from the black hole in
units of rS on a linear scale, whereas the vertical axis shows the frequency of waves (!) in units of the maximum epicyclic frequency in the disk of the Schwarzschild
black hole case (�max;a¼ 0:0) on a linear scale; the epicyclic frequency (�) becomes a maximum value at x ¼ 4:0rS. The solid curve indicates the epicyclic frequency
in the disk in the general relativistic treatment. On the other hand, the dotted curve indicates that in the disk in the nonrelativistic limit, which is equal to the
Keplerian angular frequency. The wavy arrows show the wave propagation. From the dispersion relation (see Fig. 12), acoustic waves with frequencies higher than a
maximum epicyclic frequency (�max) can reach the black hole; on the other hand, waves with frequencies lower than �max cannot reach the black hole. Hence, the
lower limit of the frequency of the waves that can reach the black hole is determined by �max. In the nonrelativistic limit, � becomes infinite near the central object,
so that no wave can reach the central object. When the black hole is corotating (a > 0:0), � is larger than that in the a ¼ 0:0 case (see Fig. 11). Therefore, the lower
limit of the frequency of the waves that can reach the black hole in the a > 0:0 case becomes larger than that in the a ¼ 0:0 case.

Fig. 16.—Comparison of the time variation of the radial velocity in the
FIDO frame at a fixed point from (a) the linear perturbation case with that
from (b) the sub-Keplerian case. In each panel the horizontal axis and vertical
axis indicate the time in units of S and the radial velocity in the FIDO frame
at x ¼ 3:4rS in units of the speed of light, respectively. The same time ranges
are shown in both panels. In (a) the initial perturbation is very small and given
at only one mesh point, whereas in (b) the initial perturbation is very large and
given everywhere in the disk. Therefore, the result from the sub-Keplerian case
is due to the superposition of the large perturbations everywhere in the disk,
which causes nonlinear effects to become important. The frequency of the
dominant waves near the inner edge of the disk is ��max, as discussed previ-
ously. This implies in both the linear perturbation case and the sub-Keplerian
case that the period of the oscillation of the dominant wave becomes �142S
(= 2�/�max). In the sub-Keplerian case, the characteristic period of the oscil-
lation (149S) is within the error range of the period 2�=�max. In the linear
perturbation case, it is also similar (131S) to the period 2�=�max; to be exact,
the characteristic frequency is slightly smaller than the period 2�=�max by 7.7%.
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instability in the disk when the resistivity is taken to be
small.

Recently, a QPO with frequency ��max was found in three-
dimensional MHD simulations of an accretion disk with a
pseudo-Newtonian potential (Machida & Matsumoto 2003). It
is probable that the mechanism of their oscillation is similar to
our mechanism for quasi-periodic inward shock formation,
because the distribution of the azimuthal velocity of the disk
in our initial conditions is very similar to that in their simu-
lations when the oscillations occur.

4.3. Comparisons with the Higgh-Frequency
QPOs in Microquasars

QPOs are believed to originate from the central regions of
black hole objects and are possibly associated with shock
formation there. When we assume the typical mass of a BHC in
a microquasar to beMBHC �10 M�, the frequency of the quasi-
periodic inward shock formation (�max=2�) around a nonro-
tating black hole (a ¼ 0:0) is estimated to be �71 Hz, and that
around a maximally rotating black hole (a ¼ 1:0) becomes
�248 Hz. Therefore, they are on the order of the frequencies
in high-frequency QPOs in microquasars: �100 Hz. Hence,
the high-frequency QPOs in microquasars can be explained by
the frequency of the quasi-periodic inward shock formation.
Moreover, �max depends on the spin of the black hole, so that we
can estimate the spin of the BHC in microquasars by comparing
the frequency of high-frequency QPOs with �max.

Figure 17 shows the dependence of �max=2� on the spin
parameter of the black hole and a comparison of it with the
frequency of high-frequency (�) QPOs in microquasars, GRS
1915+105 and GRO J1655�40. It can be seen that �max is
within the error range of the frequency of the inward shock
formation for each spin parameter. We use �(MBH=M�) for the
vertical axis in Figure 17, because �max is in inverse propor-
tion to the mass of the black hole. Because �max largely
depends on the spin parameter of the black hole, we can es-
timate the spin parameter of a BHC in a microquasar by
comparing �max=2� with the frequency of high-frequency
QPOs. In addition, we can estimate the spin parameter of a
BHC in a microquasar if the mass of the BHC is determined
quite precisely from observations, for example, of GRS
1915+105 and GRO J1655�40. The high-frequency QPOs in
GRS 1915+105 show double peaks at 40 and 67 Hz (Morgan
et al. 1997; Strohmayer 2001b), and the mass of the central
BHC is estimated as 14 � 4 M� by Greiner et al. (2001). The
error range of the spin parameter of a BHC in a microquasar
is determined by both the accuracy of the estimation of the
BHC’s mass from observations and that of the frequency
of the quasi-periodic inward shock formation for each spin
parameter in our simulations. The error of the spin parameter
due to the accuracy of the mass estimation of the BHC is a
few times larger than that of the frequency of the shock for-
mation. Here we assume the error of the frequency of the
shock formation to be 9% of the frequency, which is the
maximum value in our simulations. The ranges of �(MBH=M�)
of the high-frequency QPOs in GRS 1915+105 estimated
from these errors are shown in Figure 17 for two frequencies,
(1) 40 Hz and (2) 67 Hz. We cannot know which of the
frequencies, 40 or 67 Hz, corresponds to �max=2�. If we sup-
pose that the 40 Hz component corresponds to �max=2�, the
BHC is almost not rotating (a ¼ 0:08 � 0:08). On the other
hand, the spin parameter of the black hole is estimated to be
a ¼ 0:345 � 0:345 if we assume the 67 Hz component cor-
responds to �max=2�. The high-frequency QPOs in GRO

J1655�40 also show double peaks at 300 and 450 Hz
(Remillard et al. 1999b; Strohmayer 2001a), and the mass
of the central BHC is determined as 5.5–7.9 M� by Shahbaz
et al. (1999) or 6:3� 0:5 M� by Greene et al. (2001). If we
assume the mass of the BHC by Greene et al. (2001), the
spin parameter of the BHC can be estimated to be (3)
a ¼ 0:895� 0:105 for the 300 Hz component and (4) a ¼
0:99� 0:01 for the 450 Hz component. When we use the
mass of the BHC by Greene et al. (2001), the spin parameter
of the BHC can be estimated to be (5) a ¼ 0:885� 0:075
for the 300 Hz component and (6) a ¼ 0:995� 0:005 for the
450 Hz component.

4.4. Future Problems

The high-frequency QPOs in GRS 1915+105 and GRO
J1655�40 show double peaks; one peak is not a harmonic of
the other peak. However, in our result only one fundamental
mode and its higher harmonics were seen. On the basis of
the disk-oscillation model, various types of oscillations such
as inertial acoustic waves ( p-modes), inertial gravity waves

Fig. 17.—Comparison of the maximum epicyclic frequency with high-
frequency QPOs in microquasars. The horizontal axis shows the spin pa-
rameter of the black hole, a, on a linear scale, whereas the vertical axis shows
the frequency on a logarithmic scale. The asterisks indicate �max=2�, which is
obtained from eq. (24). The open circles with bars represent the frequencies of
the quasi-periodic inward shock formation in our simulations with error
ranges. The high-frequency QPOs, assuming the mass of the BHC in GRS
1915+105 estimated by Greiner et al. (2001) including the error of the fre-
quency of the quasi-periodic inward shock formation in our simulations, are
indicated for (1) the 40 Hz and (2) the 67 Hz components. For GRO
J1655�40, they are indicated for (3) the 300 Hz and (4) the 450 Hz com-
ponents, assuming the mass of the BHC estimated by Shahbaz et al. (1999).
Moreover, they are indicated for (5) the 300 Hz and (6) the 450 Hz compo-
nents, assuming the mass of the BHC estimated by Greene et al. (2001). The
spin parameter of the BHC can be estimated for (1) the 40 Hz and (2) the
67 Hz components in GRS 1915+105 as a ¼ 0:08� 0:08 and 0:345� 0:345,
respectively. For GRO J1655�40, the spin parameter of the BHC for (3) the
300 Hz and (4) the 450 Hz components can be estimated to be a ¼
0:895� 0:105 and 0:99� 0:01, respectively, assuming the mass of the
BHC by Shahbaz et al. (1999). If we assume the mass of the BHC by Greene
et al. (2001), the spin parameter of the BHC can be estimated as a ¼
0:885� 0:075 for (5) the 300 Hz and a ¼ 0:995� 0:005 for (6) the 450 Hz
component.
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(g-modes), and corrugation waves can occur. The p-mode is
an oscillation in the radial direction, whereas the g-mode is
in the direction perpendicular to the equatorial plane of the
disk. The corrugation waves are generated by the coupling
of these two modes. Our simulations were performed in 1.5-
dimensional coordinates, so that only the p-mode could be
seen. This is the reason that we could not reproduce the double
peaks of the high-frequency QPOs in GRS 1915+105 and
GRO J1655�40. The double peaks could be due to the mixing
of various wave modes. Therefore, they could be reproduced
by two-dimensional or three-dimensional (magneto-) hydro-
dynamic simulations.

It is known that observed high-frequency QPOs show broad
peaks in the power spectra of their light curves, which are
evaluated with the coherence parameter Q ¼ �0=�� FWHM (�0:
central frequency of the peak of the QPO; ��FWHM: width of
the peak). In our simulations, the values Qsim � �=�bw (�: a
frequency of the peak in the PSD; �bw: bin width of the peak)
correspond to the coherence parameters. Those in the a ¼ 0:0,
0.90, 0.95, and 0.99 cases are comparable to the coherence
parameters of the frequencies of the high-frequency QPOs in
GRS 1915+105 and GRO J1655�40. Hence, the frequency
resolutions in the PSDs are not high enough to discuss the
broadness of the peaks in the power spectra. In order to dis-
cuss this, longer term simulations are necessary.

One X-ray nova, XTE J1550�564, shows time-variable
high-frequency QPOs (Remillard et al. 1999a; Homan et al.
2001), and its central black hole mass is quite precisely esti-
mated by Orosz et al. (2002). These highly time variable
QPOs cannot be explained by our model. In order to explain
this behavior, a more complicated model is necessary.

5. SUMMARY

We have performed 1.5-dimensional general relativistic
hydrodynamic simulations to propose a model of high-
frequency QPOs in microquasars. The simulations were per-
formed for the equatorial plane of an accretion disk without
disk viscosity around a Kerr black hole. In order to induce
acoustic waves, we assumed that the disk was initially rotating
at 0.95 times the Keplerian velocity instead of including
viscosity in the disk. We call these simulations the ‘‘sub-
Keplerian cases.’’ We performed the simulations for spin
parameters of the black hole of a ¼ 0:0, 0.90, 0.95, and 0.99. It
was found that quasi-periodic shock waves propagate toward
the black hole. The frequencies of the shock formation
are �6:70 ; 10�3�1

S (a ¼ 0:0), �1:99 ; 10�2�1
S (a ¼ 0:90),

�1:94 ; 10�2�1
S (a ¼ 0:95), and�2:26 ; 10�2�1

S (a ¼ 0:99),
respectively. Each frequency is about the maximum epicyclic
frequency in the accretion disk (�max=2�), which depends on
the spin parameter of the black hole.

In order to investigate the mechanism of the quasi-periodic
inward shock formation, we performed another simulation
with a linear perturbation, which can be understood by linear
theory. We call this simulation the ‘‘linear perturbation case.’’
In the linear perturbation case, we inject an initial perturba-
tion into the radial velocity of 1% of the proper sound speed
in the FIDO frame at one mesh point in the Keplerian disk.
This perturbation induces various acoustic wave modes.
From linear theory, the lowest frequency of the induced
waves is the epicyclic frequency (�), and the wave with
frequency �� becomes dominant with time among the in-
duced waves. In fact, the time variation of the radial velocity
in the FIDO frame at the point of the perturbation injection in
the linear perturbation case is in good agreement with that of

the analytic solution derived in linear theory. The distribution
of � in an accretion disk is not uniform, and its maximum
value is finite under a general relativistic treatment. Hence, if
the frequency of the acoustic wave induced at the outer re-
gion of the disk is higher than �max, the wave can reach the
vicinity of the black hole. Moreover, the lowest frequency of
the waves that can reach the black hole is �max, so that the
wave with frequency ��max becomes dominant with time
near the black hole. Therefore, the nonuniform epicyclic
frequency distribution in the disk acts as a filter on the wave
propagation toward the black hole in the linear perturbation
case.

The sub-Keplerian case can be regarded as the superposi-
tion of linear perturbation cases everywhere in the disk. The
amplitudes of the induced waves in the sub-Keplerian case
are very large, because the initial perturbation is very strong.
Hence, nonlinear effects become important. In addition, the
proper mass density is very low near the black hole, so that the
induced waves evolve to shocks propagating toward the black
hole. Therefore, the characteristic frequency of the quasi-
periodic inward shock formation is also determined by the
filtering effect due to the nonuniform finite epicyclic fre-
quency distribution. Consequently, the quasi-periodic inward
shock formation is not due to wave trapping, which is pre-
dicted by linear theory in the disk-oscillation model. The
only necessary condition for shock formation in our result
is the nonsteady character of the disk. Such turbulent disks
are indeed predicted by MHD simulations as a result of
the magnetorotational instability in accretion disks. In three-
dimensional MHD simulations of accretion disks with a
pseudo-Newtonian potential, it has been found that a QPO
with �max occurs (Machida & Matsumoto 2003). Although our
model is very simple, the mechanism that produces quasi-
periodic inward shock waves may be the same as that which
produces the radial oscillations described in the work of
Machida & Matsumoto (2003).

The frequency of the quasi-periodic inward shock formation
is ��max=2� and on the order of the frequencies in high-
frequency QPOs in microquasars. Therefore, we think that
high-frequency QPOs in microquasars can be explained by
quasi-periodic inward shock formation. Hence, we can esti-
mate the spin parameter of a BHC in a microquasar by com-
paring ��max=2� with the frequency of high-frequency QPOs.
The value �max largely depends on the mass, so we have
chosen microquasars whose BHC masses are quite precisely
determined from observations, i.e., GRS 1915+105 and GRO
J1655�40. From our model, taking the 40 and 67 Hz com-
ponents in GRS 1915+105, we predict the spin parameter of
the BHC to be a ¼ 0:08� 0:08 and 0:345� 0:345, respec-
tively. As for GRO J1655�40, there are two estimations of the
BHC mass by Shahbaz et al. (1999) and Greene et al. (2001).
In the case of Shahbaz et al. (1999), the spin parameter of the
BHC for the 300 and 450 Hz components is estimated to be
a ¼ 0:895 � 0:105 and 0:99� 0:01, respectively. On the other
hand, in the Greene et al. (2001) case, we suggest that the spin
parameter of the BHC for the 300 and 450 Hz components is
a ¼ 0:885� 0:075 and 0:995� 0:005, respectively.

The high-frequency QPOs in GRS 1915+105 and GRO
J1655�40 show double peaks, although in our result only one
mode can be seen. On the basis of the disk-oscillation model,
several types of waves are induced, such as inertial acoustic
waves ( p-mode), inertial gravity waves (g-mode), and corru-
gation waves. The p-mode is an oscillation in the radial di-
rection, which is obtained in our 1.5-dimensional simulations.

QUASI-PERIODIC SHOCK FORMATIONS NEAR BHs 909No. 2, 2004



In order to reproduce the double high-frequency QPOs, two-
dimensional or three-dimensional general relativistic (mag-
neto-) hydrodynamic simulations are probably necessary.
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APPENDIX A

LINEAR PERTURBATION ANALYSIS

In this paper we deal with radially one-dimensional perturbations in accretion disks. If the perturbations are restricted to being
infinitesimal, adiabatic, and local, their propagation characteristics are properly captured by the dispersion relation (25) or its
corresponding wave equation,

@ 2v̂r
@t2

þ �2v̂r � V 2
s

@ 2v̂r
@r2

¼ 0: ðA1Þ

In this appendix we derive equation (A1) and its solution in equation (27).
Equation (A1) can be obtained by a conventional recipe; linearize basic equations (1) and (2), eliminate variables other than v̂r,

and apply the local approximation in order to remove some terms including the radial gradient of the unperturbed quantities. In the
following, we enter into details about this process.

For the purpose of deriving equation (A1), it is useful to rewrite the energy-momentum conservation equation (2) in the form of
the Euler equation:

LŪ Ũ ¼ � d̃ þ ŨLŪ
� � Z C 2

s (�)

�
d�; ðA2Þ

where L is the Lie derivative, d̃ is the exterior derivative, Ū ¼ U�@̄� , and Ũ ¼ U� d̃x
� . The right-hand side should primarily be

�(d̃ þ ŨLŪ )p= eint þ pð Þ. In the present case, however, we deal with an adiabatic gas; any thermodynamic quantity depends,
therefore, only on one independent variable, i.e., �. Thus, we have �p=(eint þ p) ¼ �

R
½C 2

s (�)=�� d�. Note that the Euler equation
(A2) gives the equation of force balance in the radial direction for the equilibrium state:

� 1

Ut
0

dUt
0

dr
þ l

1� l�

d�

dr
¼ � C2

s

�0

d�0
dr

; ðA3Þ

where � � U
�
0 =U

t
0 and l � �U�0=Ut0 are the angular velocity and the specific angular momentum, respectively. This equation is

tacitly used in our following derivation.
Next, we decompose each physical quantity into an equilibrium component and an infinitesimal, radial perturbation as

Ū ¼ Ū0(r)þ Ū1(t; r), Ũ ¼ Ũ0(r)þ Ũ1(t; r), and � ¼ �0(r)þ �1(t; r) and linearize the basic equations (1) and (A2). The conti-
nuity equation (1) is linearized as

Ut
0

@�1
@t

þ �0l
@U�

1

@t
þ 1ffiffiffiffiffiffi�gp

@
ffiffiffiffiffiffi�gp
�0U

r
1

� �
@r

¼ 0: ðA4Þ

Although the Euler equation (A2) and hence also its linearization consist of three nontrivial component equations, only two of
them are independent; we decompose equation (A2) into d̃r, d̃�, and (d̃t � ld̃�) components and write linearized equations for the
first two:

grrU
t
0

@Ur
1

@t
þ gt�l þ g��

� �
Ut

0

d�

dr
þ Ut0

dl

dr

� �
U
�
1 ¼ � @

@r
C 2

s

�1
�0

� �
; ðA5Þ

1� l�ð Þ gt�l þ g��
� �

Ut
0

@U�
1

@t
� Ut0

dl

dr
Ur

1 ¼ �l
@

@t
C 2

s

�1
�0

� �
: ðA6Þ

In deriving the above equations (A4)–(A6), we have used the subsidiary relations Ut1 ¼ ��U�1 ¼ ��(gt�l þ g��)U
�
1 and

Ut
1 ¼ lU

�
1 , which are given by the linearization of the normalization condition U �U� ¼ �1.

Eliminating variables other than

Ur
1 ¼ 1� 2rgr

�
þ A!2

3

�c2

� �1=2
�

�

� �1=2
Ut

0v̂
r

c
� NUt

0v̂
r
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from equations (A4)–(A6), we obtain

@ 2

@t2
þ �2

� �
v̂r ¼ V 2

s

@

@r
þ Q

� �
@

@r
þ P

� �
v̂r; ðA7Þ

where

P � d

dr
log

ffiffiffiffiffiffi�gp
�0U

t
0N
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þ Ut0l

U t
0 1� l�ð Þ gt�l þ g��

� � dl

dr
; ðA8Þ

Q � d

dr
log grrNV

2
s Ut

0

� �2h i
� l

1� l�

d�

dr
þ Ut0

gt�l þ g��
� �

Ut
0

dl

dr

" #
: ðA9Þ

The epicyclic frequency on the equatorial plane, �, is given by expression (24) for a Keplerian disk around a Kerr black hole. More
generally, it is defined by

�2 � Ut0

grr 1� l�ð ÞUt
0

dl

dr

d�

dr
þ Ut0

gt�l þ g��
� �

Ut
0

dl

dr

" #
: ðA10Þ

In addition, in terms of the present notation, the effective sound speed Vs, which is given by equation (26), is defined by

V 2
s � C2

s

grr Ut
0

� �2 1� Cs

c

� �2 g�t þ �g��
� �2
g2t� � gttg��

" #�1

¼ C2
s

h20 þ h3!3=cð Þ2

h21 1þ
P3

i¼1 v̂i=cð Þ2
h i 1� Cs

c

� �2
h3!3=c� h3�=cð Þ2

h3!3=cð Þ2�h20

" #�1

: ðA11Þ

Equation (A7) shows that the wave propagation characteristics are governed by the restoring effects of the centrifugal force
(the second term including � on the left-hand side) and the compressibility (the right-hand side term including Vs), although the
latter is modified by the spatial inhomogeneity of the equilibrium state as expressed by P and Q, consisting of radial gradient
terms of the equilibrium quantities. We are, however, restricted to the case in which the local approximation is applicable. This
approximation assumes that the spatial variation scale of the perturbations should be much less than that of the equilibrium
quantities. Therefore, it allows us to treat the background equilibrium state as homogeneous. Thus, P and Q are removed from
the right-hand side, and only V 2

s@
2v̂r=@r

2 remains as the dominant term expressing the effects of compressibility. We are thus led
to equation (A1).

Finally, we derive expression (27) for the radial velocity perturbation v̂r. It is a solution of equation (A1) satisfying the initial
conditions

v̂r(x; 0) ¼ F0�(x� x0);
@v̂r
@t

(x; 0) ¼ 0; ðA12Þ

where x0 is the position of the perturbation injection.
To derive the solution in equation (27), we Fourier transform v̂r as

v̂r(x; t) ¼
Z 1

�1
w(k; t) exp (ik (x� x0)) dk: ðA13Þ

(Note that, according to the local approximation, we regard � and Vs as constant.) Then, w(k; t) obeys the second-order differential
equation

@2w

@t2
þ k2V 2

s þ �2
� �

w ¼ 0; ðA14Þ
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the general solution of which is expressed as

w(k; t) ¼ A(k) cos t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2V 2

s þ �2
q� 	

þ B(k) sin t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2V 2

s þ �2
q� 	

: ðA15Þ

The coefficients A(k) and B(k) are determined by the initial condition (A12) as A(k) ¼ F0 and B(k) ¼ 0. We thus obtain our solution
in equation (27) as

v̂r x; tð Þ ¼ F0

2�

Z 1

�1
cos t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2V 2

s (x0)þ �(x0)
2

q� �
exp ik(x� x0)½ � dk

¼
� F0

2

J1 �(x0)t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x� x0ð Þ=Vs(x0)t½ �2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x� x0ð Þ=Vs(x0)t½ �2

q ; t � jx� x0j
Vs(x0)

;

0; 0 � t <
jx� x0j
Vs (x0)

;

8>>>>>><
>>>>>>:

ðA16Þ

where �(x0) and Vs(x0) are the values of � and Vs at x = x0, respectively.
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