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ABSTRACT

We analyzed the results of nonlinear resistive magnetohydrodynamic (MHD) simulations of jet formation to
study the acceleration mechanism of axisymmetric, resistive MHD jets. The initial state is a constant angular
momentum, polytropic torus threaded by weak uniform vertical magnetic fields. The time evolution of the torus is
simulated by applying the CIP-MOCCTscheme extended for resistive MHD equations. We carried out simulations
up to 50 rotation periods at the innermost radius of the disk created by accretion from the torus. The acceleration
forces and the characteristics of resistive jets were studied by computing forces acting on Lagrangian test particles.
Since the angle between the rotation axis of the disk and magnetic field lines is smaller in resistive models than in
ideal MHD models, magnetocentrifugal acceleration is smaller. The effective potential along a magnetic field line
has a maximum around z � 0:5r0 in resistive models, where r0 is the radius at which the density of the initial torus is
maximum. Jets are launched after the disk material is lifted to this height by pressure gradient force. Even in this
case, the main acceleration force around the slowmagnetosonic point is the magnetocentrifugal force. The power of
the resistive MHD jet is comparable to the mechanical energy liberated in the disk by mass accretion. Joule heating
is not essential for the formation of jets.

Subject headinggs: accretion, accretion disks — diffusion — galaxies: jets — ISM: jets and outflows —
methods: numerical — MHD

1. INTRODUCTION

Magnetically drivenmass outflows from accretion disks have
been studied extensively. Blandford & Payne (1982) showed
that a magnetocentrifugally driven cold outflow emanates from
an accretion disk when the angle � between poloidal magnetic
field lines threading the disk and the rotation axis of the disk
is larger than 30�. Nonlinear magnetohydrodynamic (MHD)
simulations of jet formation including accretion disks were first
carried out by Uchida & Shibata (1985) and Shibata & Uchida
(1986). Since the magnetically driven jet extracts angular mo-
mentum from the disk, the jet formation process enhances the
accretion of the disk material. The back reaction of the jet for-
mation on disk accretion and its relation to the magnetorota-
tional instability (MRI; Balbus &Hawley 1991) were discussed
by Stone&Norman (1994),Matsumoto et al. (1996), and Kudoh
et al. (2002).

A key question that is often raised with regards to the time-
dependent simulations of jet formation is whether the system ap-
proaches a steady state. Axisymmetric ideal MHD simulations
of jet formation including an accretion disk show episodic out-
flows instead of approaching a quasi–steady state (e.g., Kuwabara
et al. 2000). One successful approach to get a steady jet by non-
steady simulations is to treat the disk as a time-independent
boundary condition (e.g., Ustyugova et al. 1995; Romanova et al.

1997; Ouyed & Pudritz 1997; see Fendt & Čemeljić 2002 for
resistiveMHD simulations). Another approach is to include an ac-
cretion disk inside the computational box and assume magnetic
diffusivity (Kuwabara et al. 2000; Casse & Keppens 2002, 2004).

Kuwabara et al. (2000) carried out 2.5-dimensional axisym-
metric resistive MHD simulations starting from a rotating to-
rus initially threaded by weak uniform vertical magnetic fields.
They showed that the jet property drastically changes depending
on the magnetic diffusivity, which they assumed to be uniform.
When the magnetic diffusivity is small, mass accretion and jet
formation take place intermittently. On the other hand, in mildly
diffusive disks they showed by simulations for a timescale of
about 50 rotation periods at the innermost radius of the disk
that both jets and accretion disks approach a quasi–steady state.
Casse &Keppens (2002, 2004) extended this study to the case of
a geometrically thin disk initially threaded by equipartition (� ¼
Pgas=Pmag � 1) poloidal magnetic fields. By carrying out sim-
ulations assuming magnetic diffusivity localized inside the disk,
they achieved a near-stationary state.

In order to study the acceleration mechanisms and energy
transport of resistive MHD jets more quantitatively, we re-
computed the simulation models adopted by Kuwabara et al.
(2000) by applying the CIP-MOCCT scheme (Kudoh et al.
1998), which is more robust and accurate than the scheme we
adopted in Kuwabara et al. (2000).
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In x 2, we describe the assumptions and numerical methods.
Numerical results are presented in x 3. Discussions and con-
clusions are given in x 4.

2. MODELS

2.1. Assumptions and Basic Equations

We solve two-dimensional nonlinear, time-dependent, com-
pressible resistive MHD equations in a cylindrical coordinate
system (r, z) under the assumption of axisymmetry to investigate
the jet ejection from the accretion disk. The z-direction is parallel
to the rotational axis of the accretion disk (see Fig. 1). The basic
equations are

@�

@t
þ V =:� ¼ ��: =V; ð1Þ

@V

@t
þ V =:V ¼ � 1

�
:P þ 1

4��
: < Bð ÞB�: ; ð2Þ

@B

@t
¼ : V < B� �: < Bð Þ; ð3Þ

@P

@t
þ V = :P ¼ ��P:=V þ � � 1ð Þ �

0

4�
: < Bð Þ2; ð4Þ

where  is the gravitational potential

 ¼ � GM

(r 2 þ z2)1=2
; ð5Þ

G is the gravitational constant, M is the mass of the central
object, and � is the resistivity, which is assumed to be uniform.
The other symbols have their usual meanings. In equation (4),
we set � 0 ¼ � or 0. The latter corresponds to the case in which
we neglect Joule heating (or equivalently, we assume cooling
that balances with the Joule heating). The units of length, ve-
locity, time, and density are r0, VK0, r0 /VK0, and �0, where r0
is the radius at which the density of the torus is maximum, and
VK0 and �0 are the Keplerian rotation speed and the density at
(r; z) ¼ (r0; 0), respectively. In this normalization, we have two
nondimensional parameters,

Eth ¼
V 2
s0

�V 2
K0

; ð6Þ

Emg ¼
V 2
A0

V 2
K0

; ð7Þ

where Vs0 ¼ (�P0=�0)
1=2 and VA0 ¼ ½B2

0=(4��0)�
1=2

are the
sound speed and Alfvén speed at (r0, 0), respectively. Here, Eth

is the ratio of thermal energy to gravitational energy and Emg is
the ratio of magnetic energy to gravitational energy. The nor-
malized resistivity �̄ is defined as �̄ ¼ �=(r0VK0) and the mag-
netic Reynolds number at (r0, 0) is defined as Rm0 � r0VA0=�.

2.2. Initial Condition

We assume an equilibrium disk rotating around a central ob-
ject surrounded by a hot corona (e.g., Matsumoto et al. 1996).
The assumption of the existence of a hot corona is a natural
consequence of energy transfer from magnetically active disks.
Such a corona exists above galactic gas disks and the solar photo-
sphere (see, e.g., Galeev et al. 1981 for accretion disk corona).
Equilibrium solutions of a torus can be obtained under the fol-
lowing simplifying assumptions. Herewe adopted theNewtonian
analogue of Abramowicz’s relativistic tori (Abramowicz et al.
1978). The distribution of angular momentum is

L ¼ L0r
a: ð8Þ

We assume a polytropic equation of state,

P ¼ K�1þ1=n: ð9Þ

The density distribution of the torus is determined by

� GM

(r 2 þ z2)1=2
þ 1

2(1� a)
L20r

2a�2 þ (nþ 1)
P

�
¼ constant:

ð10Þ

The mass distribution outside the torus is assumed to be that
of the isothermal nonrotating high-temperature halo surround-
ing the central object,

� ¼ �h exp �
r0

(r 2 þ z2)1=2
� 1

� �� �
; ð11Þ

where � ¼ �V 2
K0=V

2
sc. Here Vsc and �h are the sound velocity

and density in the halo at (0, r0), respectively. We assume that
a ¼ 0 (L ¼ constant), n ¼ 3, � ¼ 5=3, � ¼ 1:0, �h=�0 ¼ 10�3,
Eth ¼ 5:0 ; 10�2, and Emg ¼ 5:0 ; 10�4. The initial magnetic
field is assumed to be uniform and parallel to the z-axis.
The magnetic Reynolds number is defined by Rm ¼ kVA=� ¼

Rm0(k=r0)(VA=VA0), where k ¼ 2�VA=� is the characteristic
scale of the magnetorotational instability, VA is the Alfvén ve-
locity, and� is the angular velocity of the disk. It increases from
inside the torus to the halo and it becomes Rm 31 in the halo;
thus, magnetic diffusion is not important there (Kuwabara et al.
2000).

2.3. Numerical Methods and Boundary Conditions

We solved equations (1)–(4) by using the CIP-MOCCT
method. The algorithm of the original CIP-MOCCT method and
results of test simulations are described in Kudoh et al. (1998,
1999). In this method, the CIP scheme (Yabe & Aoki 1991) is
used for the hydrodynamic part and the MOCCT scheme (Stone
& Norman 1992) is used to solve the induction equation (3) and
to evaluate the Lorentz force terms. The basic equations (1), (2),
and (4) are expressed in nonconservation form as

@f

@t
þ (V =: ) f ¼ S; ð12Þ

Fig. 1.—Left: Lagrangian test particles initially located near the surface of
the accretion disk along a magnetic field line. Right: Schematic picture showing
how to extract the force along the streamline.
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where S is the source term. We solve the equation in two steps;
the advective step @f =@t þ (V =: ) f ¼ 0 and the source step
@f =@t ¼ S. We revised the source step to ensure higher accu-
racy in space and time. In the MOCCT step, we modified the
original scheme such that we include the resistive term in the
induction equation and the characteristic equations of Alfvén
waves are solved using the CIP scheme.

The size of the simulation box is (rmax ; zmax) ¼ (5:1r0 ;
13:4r0), the number of grid points is (Nr;Nz) ¼ (200; 256), and
the grid size is �r ¼ 0:01r0 when 0 � r � 1 and �z ¼ 0:01r0
when 0 � z � 1. Otherwise, the grid size increases with r and z.
At r ¼ 0, we assume that �,P,Vz, andBz are symmetric, whileVr,
V�, Br, and B� are antisymmetric. We computed only the upper
half-plane (z > 0) by assuming that �, P, Vr, V�, and Bz are
symmetric, while Vz, Br, and B� are antisymmetric with respect
to z ¼ 0. The outer boundaries at r ¼ rmax and z ¼ zmax are free
boundaries where waves can be transmitted. We softened the
gravitational potential inside R ¼ (r 2 þ z2)1=2 ¼ Rin ¼ 0:2r0 to
avoid the singularity at R ¼ 0. As we show later, the disk mate-
rial smoothly penetrates into the region R < Rin. Rin can be con-
sidered as the innermost radius of the disk. The unit time t0 ¼
r0=VK0 � 11Rin=VK;in , where VK,in is the Keplerian rotation
speed at r ¼ Rin, corresponds to 1.8 rotation periods at r ¼ Rin.

We analyzed the results of three simulations (see Table 1).
Model R is a mildly diffusive model (�̄ ¼ �̄ 0 ¼ 1:25 ; 10�2).
Model RC is the resistive model without Joule heating (�̄ ¼
1:25 ; 10�2; �̄ 0 ¼ 0). Model I is the nondiffusive model (�̄ ¼
�̄ 0 ¼ 0). Model R and model I are the same as those reported by
Kuwabara et al. (2000).

To study the acceleration mechanism of the jet, we put
Lagrangian test particles near the disk surface and computed the
time evolutions of the location of these particles and evaluated
the forces acting on each particle as schematically shown in
Figure 1 (left). The initial positions of particles are selected such
that they form the main part of the jet. In model R, we put
Lagrangian particles on a magnetic field line at r ¼ 1:5r0, be-
tween z ¼ 0:64r0 and 0.84r0. In model I, we put them on a
magnetic field line at r ¼ 0:8r0, between z ¼ 0:31r0 and 0.46r0.
The particle positions are updated by using fluid velocity
V ¼ (Vr;Vz) as follows: r

nþ1
p ¼ r np þ Vr�t, znþ1

p ¼ znp þ Vz�t.
Here rp and zp are the position of particles and nþ 1 and n show
the time step whose interval is �t. In Figure 1 (right), we
schematically show the force f 0p , defined as the projection of
poloidal force per mass fp to the direction of poloidal velocity
vector Vp of the particle,

f 0p ¼ j f pj
f p =Vp

j f pjjVpj
: ð13Þ

When the sign of force f 0p is positive, the force accelerates the
particle. On the other hand, when the sign of the force f 0p is

negative, it decelerates the particle, respectively. By plotting the
time variation of f 0p , we can check the acceleration force along
the streamline acting on particles.

3. NUMERICAL RESULTS

3.1. Time Evvolution of Jets

Figure 2 (top panels) shows the time evolution of temperature
distribution (color scale), magnetic field lines (white curves), and
velocity vectors (arrows) in model R. Numerical results are in
good agreement with those reported by Kuwabara et al. (2000).
As Kudoh et al. (1998) have already shown, numerical results
obtained by the CIP-MOCCT scheme agree well with those ob-
tained by the modified Lax-Wendroff scheme with artificial vis-
cosity, except that numerical oscillations in low-� regions are not
prominent when the CIP-MOCCT method is used and that con-
tact surfaces are sharply traced with the CIP-MOCCT method.
Figure 2 (bottom panels) show the time evolution ofmodel RC. In
this model, resistivity is included in the induction equation but the
Joule heating term is not included in the energy equation. Nu-
merical results indicate that Joule heating is not essential for jet
formation. The collimation of the jet is better in the model without
Joule heating (model RC) because the temperature of the jet is
lower than that in the model with Joule heating (model R).

Figure 3 (left) shows the density distribution at t ¼ 25. A high-
density ridge is formed near the outermost radius of the initial
torus. This ridge is the contact surface between the disk material
ejected from the disk and the ambient halo. The main part of
the jet is inside this dense ridge. The density of the main part of
the jet at z ¼ 4r0 is �jet � 10�3�0, but still larger than the halo
density. Figure 3 (right) shows the volume-rendered image of
the density distribution (color scale) and the three-dimensional
structure of magnetic field lines (solid curves). The magnetic
field lines are highly twisted owing to the rotation of the disk.

3.2. Acceleration Force of Jets

Figure 4 shows the distribution of gas pressure (gray scale),
magnetic field lines (white curves), and velocity vectors for
model I (left), model R (middle), and model RC (right). In the
ideal MHD model (model I), gas pressure is small in the inner
region (0:2 < r < 0:7 and 0 < z < 0:1), where magnetic pres-
sure supports the disk. Mass accretion proceeds along the surface
channel where the angular momentum of the infalling gas is
magnetically extracted. Since themagnetic fields are frozen to the
plasma, mass accretion deforms the magnetic field lines. Mag-
netocentrifugal force accelerates the plasma along magnetic field
lines that are at a sufficiently large angle from the rotation axis.

In resistive models (model R and model RC), magnetic field
lines are not deformed so much as those in the ideal MHD
model because matter can traverse the magnetic field lines.
Since the infalling matter loses less angular momentum than
that in the ideal MHD model, a centrifugally supported inner
disk is formed. Because of adiabatic compression, gas pressure
increases in the equatorial region. Gas pressure in the surface
region of the disk is larger in model R than in model RC because
of Joule heating.

Figure 5 (right) shows the dependence of the inclination
angle � on the poloidal magnetic field line in model R, depicted
by a white curve in the left panel. The angle from the rotation
axis of the disk does not exceed 30�. This does not indicate that
magnetocentrifugal acceleration is unimportant because fluid
elements away from the equatorial plane can be accelerated by
the magnetocentrifugal force even when � < 30�.

TABLE 1

Model Parameters

Model �̄ Rm0 Outflow Type

Joule Heating

in Energy Equation

I ..................... 0.0 1 Episodic no

R.................... 1:25 ; 10�2 1.8 Quasi steady yes

RC ................. 1:25 ; 10�2 1.8 Quasi steady no

Notes.—In all models, Eth ¼ V 2
s0=(�V

2
K0) ¼ 5 ; 10�2, Emg ¼ V 2

A0=V
2
K0 ¼ 5 ;

10�4, and �h=�0 ¼ 10�3.
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Figure 6 (left) shows the isocontours of temperature (gray-
scale contour), magnetic field lines (white curves), and velocity
vectors (arrows) for model R at t ¼ 13:1. Cold disk matter is
accelerated along the magnetic field lines and forms jets as
we already showed in Kuwabara et al. (2000). Figure 6 (right)
shows the distribution of pressure (gray-scale contour), poloi-
dal stream lines (white curves), and poloidal Lorentz force vec-
tors (J < B)p=� ¼ (J < B)r; (J < B)z½ �=� (arrows), where J ¼
c: < B=(4�). The softened gravitational potential inside r ¼
Rin has a small influence on the formation of jets emanating
from the outer radius. The streamlines shown in Figure 6 (right)
smoothly pass through R ¼ Rin and slowly accrete to the central
object.

The poloidal Lorentz force is almost perpendicular to the
poloidal stream lines in the launching region of the jet. This
means that Lorentz force collimates the outflow toward the
rotation axis, but acceleration along the poloidal magnetic

field lines is small. We would like to point out that inside the
disk, the poloidal Lorentz force points toward the equato-
rial plane because the magnetic field mainly has a +� com-
ponent and the electric current mainly has a �r component.
Thus, the Lorentz force compresses the torus in the vertical
direction. This force suppresses the outflow from this region.
However, in the surface layer of the disk, where the mag-
netic field lines change their direction from radial to vertical,
the poloidal Lorentz force changes its direction and enables
outflows.
A black circle in Figure 6 (right) denotes the position of the

test particle initially inside the torus at (r; z) ¼ (1:5r0; 0:73r0)
and later accelerated along the magnetic field line. For this test
particle, the poloidal Lorentz force makes almost no contribution
to the acceleration along the magnetic field line until t � 13:0.
On the other hand, the test particle is in the region where pressure
gradient force lifts the particle in the vertical direction.

Fig. 2.—Time evolution of temperature distribution (color contours), magnetic field lines (white curves), and velocity vectors (white arrows). Top panels: Model R
(with Joule heating). Bottom panels: Model RC (without Joule heating).
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Figure 7 (left) shows the trajectories of the Lagrangian par-
ticles that are initially on a magnetic field line at r ¼ 1:5r0 in
model R. The initial position of particles is selected such that
they form the main part of the jet. Figure 7 (right) shows the
time variation of the forces per mass along the streamline ex-
erted on the particle, which is shown by open circles in Figure 7
(left). The forces accelerate the particle along its stream line
when the sign is positive and decelerate the particle when the sign
is negative. In Figure 7 (right), the curve Fc shows the centrifugal
force (v2�=r)k, the curve Fg shows the gravity (�GM=r 2)k, the
curve Fp shows the pressure gradient force (�:P)k=�, the
curve FL shows the poloidal Lorentz force per mass (J < B)pk=�,
and the curve Ft shows the total force per mass obtained by
summing the four forces. Here the subscript ‘‘k’’ means the
component parallel or antiparallel to the direction of the velocity
vector of the particle. The two vertical dotted lines show the time
when Vz changes from negative to positive (left line) and when Vr

changes from negative to positive (right line). Around t �12:5,
centrifugal force decelerates the radial inflow. The pressure gra-
dient force contributes to turn the direction of motion toward the
vertical direction. When the gravitational force becomes zero
(t �12:8), the pressure gradient force along the streamline reaches
maximum, while the centrifugal force still decelerates the par-
ticle. At t ¼ 13:16, the centrifugal barrier finally turns the di-
rection of the motion of the particle to the þr direction. After
the radial velocity becomes positive, centrifugal force and the
Lorentz force slowly accelerate the particle along the magnetic
field line (t > 13:4).

Figure 8 (left) shows the trajectories of particles that are ini-
tially located on a magnetic field line at r ¼ 0:8r0 for model I.
The initial position of particles is selected such that the particles
form the main part of the jet. Figure 8 (right) shows the forces
along the streamline of the particle denoted by open circles in
Figure 8 (left). Until t � 4:6, centrifugal force almost balances

Fig. 3.—Left: Density distribution (color contours), velocity vectors (white arrows), and magnetic field lines (white curves) at t ¼ 25. The yellow arrow shows the
unit velocity. Right: Three-dimensional distribution of density (color) and magnetic field lines (blue curves).
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with the radial gravity (i.e., Keplerian rotation). Around t ¼
4:85, when the particle turns its direction to theþr direction, the
Lorentz force has the largest contribution to the acceleration of
the particle. After t ¼ 4:9, the summation of centrifugal force
and the Lorentz force accelerates the particle. This result is con-
sistent with that of Kudoh et al. (1998) and Kato et al. (2002).
Since the magnetic forces are much larger than those in model R
(Fig. 7), acceleration is larger.

Figure 9 shows the time dependence of the r and z compo-
nents of each force per mass acting on the Lagrangian particle
shown as an open circle in Figure 7 (left) for model R. The left
panels show the r-component and the right panels show the
z-component. In the radial direction, centrifugal force exceeds
the radial gravity around t �12. Subsequently, the radial com-

ponent of the Lorentz force collimates the outflow (t �14). In
the vertical direction, the fluid element is lifted almost hydro-
statically near the ejection time (t �12:5) and subsequently
accelerated by the Lorentz force (t �14). It means that the cen-
trifugal barrier turns the direction of inflows. At the same time,
the vertical component of the pressure gradient force lifts the
particle toward the z-direction and finally it is accelerated by the
Lorentz force. Thus, the radial inflow turns into the outflow
along the magnetic field line.
Figure 10 (top) shows the magnetic pressure log10PB and the

gas pressure log10Pg along the magnetic field line depicted in
Figure 5 (left). The vertical dotted lines in the top,middle, and bot-
tom panels of Figure 10 show the ejection point of the jet where
Vr ¼ 0. At the ejection point, the gas pressure is dominant. On the

Fig. 4.—Pressure distribution in model I (left), model R (center), and model RC (right). White curves show themagnetic field lines, arrows show the velocity vectors,
and the arrow at the upper right corner shows the unit velocity.

Fig. 5.—Left: Temperature distribution at t ¼ 20:0 in model R (�̄ ¼ 1:25 ; 10�2). Right: Spatial variation of the angle � between the poloidal magnetic field line
depicted in the left panel and the rotational axis as a function of z. The dashed line shows the critical angle over which the magnetocentrifugal acceleration drives
outflows.
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other hand, the magnetic pressure becomes dominant in z > 0:35.
Figure 10 (middle) shows the effective potential,

�eA ¼ � 1

(r 2 þ z2)1=2
� 1

2
�2r 2; ð14Þ

along the magnetic field line shown by a white curve in Figure 5
(left). The solid circle shows the slow magnetosonic point where
Vp ¼ Vslow. Here Vp is the poloidal speed and Vslow is the slow
magnetosonic speed, defined as

Vslow ¼ 1

2
V 2
s þ V 2

A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
A þ V 2

s

� �2� 4V 2
p;AV

2
s

q� �
; ð15Þ

where V 2
p;A ¼ B2

p=(4��).
The fluid elements in the region of d�eA=dl < 0 are accel-

erated by the magnetocentrifugal force and those in the region of
d�eA=dl > 0 accrete in the case of ideal MHD (Kudoh et al.
1998), where l is the line element of a magnetic field line. How-

ever, in the resistive model, the gas in the region d�eA=dl > 0 is
ejected because the gradient of gas pressure along a magnetic
field line lifts the fluid elements and enables them to jump over
the potential barrier. Subsequently, the gas is accelerated bymag-
netocentrifugal force. On the other hand, in the ideal MHD case
the ejection point locates almost at the top of the effective po-
tential (d�eA=dl � 0) and the slow magnetosonic point almost
coincides with this point (Fig. 10, bottom).

3.3. Quasi Stationarity of Outflow

Figure 11 (top) shows the time evolution of fluxes of angular
momentum and mass,

Fl ¼ 2

Z 2:5

0

2�r r�VzV��
rBzB�

4�

� 	
dr; ð16Þ

Fm ¼ 2

Z 2:5

0

2�r�Vz dr; ð17Þ

at z ¼ 3r0. The angular momentum and mass fluxes approach
constant values around t ¼ 25. Figure 11 (bottom) shows the
distribution of the following quantities on the magnetic field
line depicted in Figure 5:

K ¼ 4��
jVpj
jBpj

; ð18Þ

� ¼ rV� �
rB�

K
; ð19Þ

� ¼ V�

r
� KB�

4��r
; ð20Þ

S ¼ log
P

��

� 	
; ð21Þ

E ¼ �P

(� � 1)�
þ  � r 2�2

2
þ

V2
p

2
þ r 2(V�=r � �)2

2
: ð22Þ

In the ideal MHD case, these quantities should be constant
along a magnetic field line (Ustyugova et al. 1999). The vertical
dotted line shows the position where Vr is zero (the ejection
point of the jet). The quantities are nearly constant even in the

Fig. 6.—Close up of the jet-launching region of model R (�̄ ¼ 1:25 ; 10�2) at
t ¼ 13:1. Left: The gray-scale contour shows the temperature distribution, the
arrows show the poloidal velocity vectors (an arrow at upper right corner shows
the reference velocity vector ¼ VK0), and white curves show poloidal magnetic
field lines. The black circle shows the position of the Lagrangian particle at this
time. Right: The gray-scale contour shows the pressure distribution, arrows show
the poloidal component of the Lorentz force (an arrow at the upper right corner
shows the reference vector ¼ 3GM=r 20), and white curves show poloidal stream
lines. The black circle shows the position of the Lagrangian particle at this time.

Fig. 7.—Left: Trajectories of Lagrangian particles in model R (�̄ ¼ 1:25 ; 10�2). Dashed curves show the trajectories of Lagrangian test particles. The solid curve
shows the initial disk surface. Circles are the location of test particles at times denoted in the figure. Right: Forces along the streamline of the particle shown by open
circles in the left panel. Forces accelerate the particle when the sign is positive and decelerate the particle when the sign is negative. Radial velocity Vr and vertical
velocity Vz change their sign at the time denoted by vertical dotted lines. Curves Fc, Fg, Fp, FL, and Ft show centrifugal force, gravity, pressure gradient force, poloidal
Lorentz force, and total force.
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resistive model. These results indicate the quasi stationarity of
the outflow.

3.4. Powers of Jets

To study the energetics of the jet formation and compare them
with the results by Casse & Keppens (2004), we compute the
energy liberated by accretion Pacc and the power of jet Pjet, de-
fined as follows:

Pacc ¼ Pmec þ Pent þ PMHD; ð23Þ

Pmec ¼� 2

Z 0:3

0

2�r�Vr

V 2

2
þ  

� 	
dz; ð24Þ

Pent ¼� 2

Z 0:3

0

2�r�Vr

�

� � 1

P

�

� 	
dz; ð25Þ

PMHD ¼� 2

Z 0:3

0

2�r
c

4�
E < Bð Þr dz; ð26Þ

Fig. 8.—Left: Trajectories of Lagrangian particles in model I (�̄ ¼ 0:0). Dashed curves show the trajectories of test particles. The solid curve shows the initial disk
surface. Circles are the location of test particles at times denoted in the figure. Right: Forces along the streamline of the particle shown by open circles in the left panel.
Forces accelerate the particle when the sign is positive and decelerate the particle when the sign is negative. Radial velocity Vr and vertical velocity Vz change their sign
at the time denoted by vertical dotted lines. Curves Fc, Fg, Fp, FL, and Ft show centrifugal force, gravity, pressure gradient force, poloidal Lorentz force, and total force.

Fig. 9.—Time evolution of r- and z-components of each force acting on the
Lagrangian particle (open circle) in Fig. 7 (model R).

Fig. 10.—Top: Distribution of magnetic pressure PB and gas pressure Pg at
t ¼ 20 on the magnetic field line depicted in Fig. 5. Middle: Distribution of
effective potential at t ¼ 20 on the magnetic field line depicted in Fig. 5. Bottom:
Distribution of effective potential at t ¼ 5:5 along a magnetic field line in the
main part of the ideal MHD jet (model I). The vertical dotted line shows the
ejection point of the jet (Vr > 0). Solid circles show the slow magnetosonic
point.
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at r ¼ 0:4r0, and

Pjet ¼ Pmec; J þ Pent; J þ PMHD; J ; ð27Þ

Pmec; J ¼ 2

Z 2:5

0

2�r�Vz

V 2

2
þ  

� 	
dr; ð28Þ

Pent; J ¼ 2

Z 2:5

0

2�r �Vz

�

� � 1

P

�

� 	
dr; ð29Þ

PMHD; J ¼ 2

Z 2:5

0

2�r
c

4�
E < Bð Þz dr; ð30Þ

at z ¼ 3r0.
Figure 12 shows the time evolution of the energy fluxes in the

jet: a mechanical power Pmec, J, enthalpy flux Pent,J, Poynting

fluxPMHD,J, and the ratioRpow,J of each power to the total power
Pjet at z ¼ 3. The dominant energy flux at this height is the
Poynting flux, whose ratio to the total power is RMHD; J � 70%.
The enthalpy flux and themechanical flux contribute toReng; J �
20% and Rmec; J � 10%, respectively.

Kudoh & Shibata (1997) showed that the dominant energy of
a jet depends on the strength of the magnetic field. When the
poloidal component of the magnetic field is Bp / r�2, the fast
magnetosonic point appears far from the Alfvén point and the
dominant energy of the jet is the Poynting flux. In our simu-
lations, the initial magnetic field is uniform. In such models,
the fast magnetosonic point locates far from the Alfvén point
(Kuwabara et al. 2000).

Figure 13 (top) shows the magnetic flux Bp� along the mag-
netic field line depicted in Figure 5; �(� / r 2) is a cross sec-
tion of the flux tube. Since Bp� � constant, Bp / r�2. Figure 13
(bottom) shows the total specific energy E ¼ V 2

p =2þ V 2
� =2þ

½�=(� � 1)�P=�þ  � r�0B�=(4�k
0). Here V 2

p =2 is the poloidal
kinetic energy,�r�0B� /(4�k0) is the Poynting flux divided by �Vp

where �0 ¼ �VpB�=Bp þ V�=r, and k0 ¼ �Vp=Bp. Figure 13
shows that the Poynting flux is dominant. It is consistent with the
case of Bp / r�2 in Kudoh & Shibata (1997).

Figure 14 shows the time evolution of the mechanical power
Pmec, enthalpy flux Pent, Poynting flux PMHD transported inward
through r ¼ 0:4r0 in the disk, and the ratio of the total power of
the jetPjet to the total power liberated by accretionPacc. Numerical
results ofmodel R indicate that�Pent=Pmec � 0:4,PMHD=Pmec �
0:1, and Pacc=Pmec � 0:7. Meanwhile, Pjet � Pacc. Thus, ~70%

Fig. 12.—Time evolution of powers accelerating the jet; mechanical power
Pmec, J, enthalpy Pent , J , Poynting flux PMHD, J, and the ratio Rpow, J of each power
to total power. RMHD, J , Rent , J , and Rmec, J are the ratio of Poynting flux, enthalpy,
and mechanical power to total power of jet.

Fig. 11.—Top: Time evolution of fluxes of angular momentum Fl and mass
Fm. Bottom: Distribution of variables, K ¼ 4��jVpj=jBpj, � ¼ rV� � rB�=K,
� ¼ V�=r � KB�=(4��r), S ¼ log (P=��), and E ¼ ½�=(� � 1)�P=�þ  �
�2r 2=2þ V 2

p =2þ (V�=r � �)2r 2=2 at t ¼ 20 on the magnetic field line de-
picted in Fig. 5. The vertical dotted line shows the ejection point of the jet
(Vr > 0).

Fig. 13.—Top: Magnetic flux Bp� at t ¼ 20 along the magnetic field line
depicted in Fig. 5;�(� / r 2) is a cross section of the flux tube. Bottom: Specific
energies at t ¼ 20 along the magnetic field line in Fig. 5. The solid curve shows
the total energyE ¼ V 2

p =2þ V 2
� =2þ ½�=(� � 1)�P=�þ  � r�0B�=(4�k

0), the
dashed curve shows the poloidal kinetic energy V 2

p =2, and the dash-dotted curve
shows the Poynting flux divided by �Vp, �r�0B� /(4�k0).
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of the mechanical energy released by mass accretion powers
the jet.

4. SUMMARY AND DISCUSSION

In this paper, we studied the acceleration mechanism of re-
sistive MHD jets launched from accretion disks threaded by
weak large-scale poloidal magnetic fields. We recomputed the
models we reported in Kuwabara et al. (2000) by applying the
CIP-MOCCT scheme modified for resistive MHD equations.
We carried out simulations for a timescale of about 50 times the
inner orbital time. Figure 15 shows the ejection mechanism of
resistive MHD jets. In mildly resistive disks, the disk gas infalls
without losing much of its angular momentum because mag-
netic field lines are less deformed than those in ideal MHD
model. Thus, the matter accreting from the initial torus hits the
centrifugal barrier and forms a high-pressure inner disk whose
pressure gradient force enables the accreting material to jump
over the barrier of the effective potential. The material lifted up
by pressure gradient force passes through the slow magneto-
sonic point and is accelerated by the magnetocentrifugal force.
Mass accretion/outflow takes place continuously and the sys-
tem approaches a quasi-steady inflow-outflow state.

The main acceleration force is the magnetocentrifugal force
for both resistive and nonresistive models. The point of accel-
eration by the magnetocentrifugal force depends on the resis-
tivity and is z � 0:6r0 when �̄ � 0:01 and z � 0:25r0 when
�̄ ¼ 0. The acceleration force for the resistive model is only
25% of the acceleration for nonresistive case. We confirmed
that Joule heating is not essential for the formation of jets.

Through resistive MHD simulations, treating the accretion
disk as the fixed boundary, Fendt & Čemeljić (2002) showed
that the jet velocity increases with increasing diffusivity. This
result is consistent with the result of Kuwabara et al. (2000) that
the mass outflow rate increases with the resistivity up to some
critical value. The timescale approaching the quasi–steady state
is shorter in our approach, which includes the disk in the sim-
ulation region because accretion of the disk material deforms
the magnetic field lines.

Casse & Keppens (2004) showed by MHD simulations as-
suming the magnetic diffusivity localized inside the disk that

resistive MHD jets are formed from a thin disk threaded by
global poloidal magnetic fields. Although the initial conditions
and model parameters of our simulations are quite different from
those of Casse & Keppens, the density distribution and struc-
tures of magnetic field lines of the disk-jet system at the final
quasi–steady state are similar (see Fig. 2 of Casse & Keppens
2004).
The energy flux of jets in our mildly resistive model is mainly

transported by the Poynting flux, while the mechanical flux dom-
inates the outflow in Casse & Keppens (2004). Kudoh & Shibata
(1997) showed that the dominant energy of a jet depends on the
strength of the magnetic field. When the poloidal component
of magnetic field is Bp / r�2, the fast magnetosonic point ap-
pears far from the Alfvén point and the dominant energy of the
jet is Poynting flux. When Bp / r�ð2þaÞ where a > 0, the fast
magnetosonic point locates near the Alfvén point and the dom-
inant energy is the kinetic energy. In our model, Bp is constant
with radius at the initial state. Numerical results are consis-
tent with those in Kudoh & Shibata (1997) when Bp decreases
slowly with radius. Since magnetic energy decreases faster in
Casse & Keppens (2004), the fast magnetosonic point locates
closer to the ejection point of the jet. Thus, in Casse & Keppens
(2004), the jet is dominated by kinetic energy.
The jet power (Pjet) is comparable to the energy released by

mass accretion (Pacc), which is ~70% of the released mechanical
energy Pmec. As Casse & Keppens (2004) pointed out, in ADAF
(advection dominated accretion flows), Pmec � �Pent so that
Pacc � 0. Thus, the resistive inflow-outflow configuration is dif-
ferent from ADAF. Our numerical results can be interpreted as
magnetic analogue of advection dominated inflow-outflow solu-
tions (ADIOS) that appears in hydrodynamic models with high
phenomenological viscosity (Blandford & Begelman 1999).
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2112-M-008-006. The numerical computations were carried out
on VPP5000 at the Astronomical Data Analysis Center of the
National Astronomical Observatory, Japan, under the projects
rmh17b and rhn31b.

Fig. 14.—Time evolution of powers liberated by accretion, mechanical
power Pmec, enthalpy Pent, Poynting flux PMHD transported inward through r ¼
0:4r0 in the disk, and the ratio of the total power of jet to the total power of
accretion Pjet / |Pacc|, Pacc ¼ Pmec þ Pent þ PMHD.

Fig. 15.—Schematic picture of the ejection mechanism of the outflow in
model R (�̄ ¼ 1:25 ; 10�2). The gray region shows the high-pressure inner torus
created by the adiabatic compression of gases.
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