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Abstract

Series of three-dimensional magnetohydrodynamic simulations are used to study the nonlinear evolution
of the magnetic buoyancy instability of the magnetic flux sheet with magnetic shear. A horizontal flux
sheet that is initially placed below the photosphere is susceptible to both the interchange instability and
the Parker instability (the undular mode of the magnetic buoyancy instability). The growth rate in the
linear stage of the instability in the numerical simulation is consistent with that predicted by the linear
theory. In the nonlinear stage, the development depends on the initial perturbation form as well as the
initial magnetic field configuration(i.e. presence of magnetic shear) When an initial perturbation is assumed
periodic, the emerging flux rises up to the corona and the magnetic field expands like a potential field as in
2D results. When non-periodic perturbation or random perturbations are assumed initially, the magnetic
flux expands horizontally when the magnetic field emerges a little into the photosphere. The distribution
of magnetic field and gas tends to be in a new state of magnetohydrostatic equilibrium. When magnetic
shear is present in the initial magnetic flux sheets, the interchange mode is stabilized so that the emerging
loop becomes higher than in a no magnetic shear case. We also discuss how the presented results are
related to the emerging flux observed on the Sun.
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1. Introduction

The magnetic activity observed on the Sun originates
from the emergence of the magnetic flux which is created
deep in the convection zone (e.g., Parker 1979). Sunspots
and active regions are formed by the magnetic flux tubes
emerging from the interior of the Sun into the solar at-
mosphere (e.g.,Zwaan 1985; Zwaan 1987) as a result of
magnetic buoyancy (Parker 1955). Much of the dynamics
of the emerging process of the magnetic field, however, is
not yet understood well because of the intrinsic nonlinear
properties. Hence it is important to study the nonlinear
dynamics of emerging magnetic flux and magnetic buoy-
ancy.

It has been revealed that a flux sheet in magnetohy-
drostatic equilibrium in a gravitationally stratified gas
layer becomes unstable due to magnetic buoyancy. This
is called the magnetic buoyancy instability (e.g., Hughes,
Proctor 1988; Tajima, Shibata 1997). There are two
modes in the magnetic buoyancy instability: the undular
mode (k ‖B) and the interchange mode (k⊥B), where k
is the wavenumber vector and B is the magnetic field vec-
tor. The undular mode is often called the Parker instabil-
ity (Parker 1966) in astrophysical literatures, whereas the
interchange mode is sometimes called the flute instabil-
ity or the magnetic Rayleigh-Taylor instability (Kruskal,
Schwarzchild 1954). The undular mode occurs for long-

wavelength perturbations along the magnetic field lines
(the most unstable wavelength » 15H, where H is the
pressure scale height), when the magnetic buoyancy cre-
ated by the gas sliding down along a field line is greater
than the restoring magnetic tension. On the other hand,
the interchange mode occurs for short-wavelength pertur-
bations, when the interchange of two straight flux tubes
reduces the potential energy in the system. The linear
growth rate of the interchange mode is generally much
greater than that of the undular mode because of the short
wavelength, though the nonlinear stage is dominated by
the undular mode in many cases (Matsumoto et al. 1993;
Tajima, Shibata 1997). Hence, the undular mode (here-
after, called the Parker instability) is more important than
the interchange mode in nonlinear problems, and therefore
in astrophysical problems.

The first nonlinear simulations of the Parker instabil-
ity were made by Matsumoto et al. (1988) using a two-
dimensional (2D) MHD code. They found that giant in-
terstellar clouds are formed in the nonlinear stage of the
Parker instability, and that a shock wave is formed in-
side the downflow along the rising loop. Applying the
Matsumoto et al. (1988) simulations to the solar case,
Shibata et al. (1989b, 1990a) showed that the self-similar
expansion of a magnetic loop occurs in the nonlinear evo-
lution of the 2D Parker instability in the solar atmosphere
(i.e., in the solar emerging flux). Nozawa et al. (1992)
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have made an extensive study of the linear and nonlinear
evolution of the Parker instability in the convectively un-
stable gas layer. Further 2D simulations have been done
by Kamaya et al. (1996) for triggering the nonlinear insta-
bility by supernova explosion, and by Basu et al. (1997)
and Kim et al. (2000) for application to galactic disks.

As shown by Parker (1966)’s original analysis, how-
ever, the most unstable mode shows three dimensional
(3D) behavior. That is, the instability has the maximum
growth rate for non-zero k⊥ even when non-zero k‖ is the
main cause of the instability, where k⊥ is the wavenumber
vector perpendicular to the magnetic field and k‖ is the
wavenumber vector parallel to the magnetic field. Thus,
3D nonlinear simulations are necessary to examine the ac-
tual nonlinear evolution of the Parker instability in 3D
space. Matsumoto, Shibata (1992) and Matsumoto et
al. (1993) were the first works that performed 3D non-
linear simulations of the Parker instability for both solar
and galactic cases, and confirmed the basic results of the
previous 2D simulations, such as cloud formation, shock
waves, self-similar evolution. However their spatial and
temporal scales depended on k⊥. If a large k⊥ is ini-
tially assumed, the magnetic loop tends to have thinner
structures and suffers from horizontal expansion, which
eventually suppress the upward expansion (Matsumoto et
al. 1993). Similar thinner structures have also been found
in more recent 3D simulations by Kim et al. (1998a, 2001,
2002) and Hanasz et al. (2002).

However, if magnetic shear is present in the initial
magnetized gas layer, the interchange mode is stabilized,
i.e., the growth of thinner structures is suppressed and
larger scale structures may appear (Hanawa et al. 1992).
Kusano et al. (1998) using 2.5D MHD simulations showed
that the larger scale structures are created in the pres-
ence of magnetic shear. Such magnetic shear is often ob-
served in the solar active regions as twisted flux tubes
(Kurokawa 1989; Kurokawa et al. 2002; Ishii et al. 1998;
Matsumoto et al. 1998; Fan 2001; Magara, Longcope 2001;
Ryu et al. 2003; Magara, Longcope 2003; Magara 2004;
Fan, Gibson 2004), and may be created in the convec-
tion zone (Cattaneo et al. 1990; Matthews et al. 1995)
and under the influence of the Coriolis force (Shibata,
Matsumoto 1991; Chou et al. 1999; Hanasz et al. 2002).
Nevertheless, no one has yet studied the effect of mag-
netic shear on the 3D nonlinear evolution of the Parker
instability.

In this paper, by using 3D MHD simulations, we present
a detailed analysis of the 3D nonlinear evolution of the
Parker instability in a magnetic flux sheet with magnetic
shear, and examine the effects of magnetic shear on the
nonlinear Parker instability. The initial gas layer and
magnetic field are assumed to be suitable for application
to solar emerging flux (e.g., Shibata et al. 1989a), though
the basic physics is also applicable to the galactic case.
Section 2 gives assumptions, basic equations and numer-
ical procedures. The numerical results are described in
section 3, and section 4 is devoted to discussions and con-
clusions.

2. Methods of Numerical Simulations

2.1. Assumptions and Basic Equations

The assumptions, basic equations, and initial conditions
are similar to those in Nozawa et al. (1992). That is, we
assume the following: (1) the medium is an ideal MHD
plasma, (2) the gas is a polytrope of index γ = 1.05, (3)
the magnetic field is frozen into the gas, (4) the viscosity
and resistivity are neglected.

Cartesian coordinates (x,y,z) are adopted so that the z-
direction is anti-parallel to the gravitational acceleration
vector. The gravitational acceleration is assumed con-
stant. Thus, the basic equations in vector form are as
follows:

∂ρ
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+∇· (ρV ) = 0,(1)

∂
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and

U =
1

γ − 1
p

ρ
, (5)

E = −1
c
V ×B, (6)

where ρ is the density, V = (Vx,Vy,Vz) is the velocity vec-
tor, p is the thermal pressure, t is the time, g = (0,0,−g)
is the gravitational acceleration, c is the light velocity, I is
the unit tensor, U is the internal energy, B = (Bx,By,Bz)
is the magnetic vector, E is the electric field and the other
symbols have their usual meanings.

2.2. Initial Condition and Parameters

In the simulations the units of length, velocity, and time
are H,Cs and H/Cs ≡ τ , respectively, where Cs and H are
the sound speed and pressure scale height in the photo-
sphere/chromosphere. It is to be noted that the photo-
spheric temperature Tph can be calculated from Cs, since
Tph = µC2

s /(γRg), where µ and Rg are the mean molec-
ular weight and gas constant, respectively. Therefore we
need not specify the value of Tph explicitly. The units
for gas pressure, density, and magnetic field strength are
p0 ≡ ρ0C

2
s , ρ0 (the initial density at the base of the gas

layer, z = zmin), and B0 ≡ (
√

ρ0C2
s ), respectively. When

the numerical results are compared with observations, we
use H = 200km, Cs = 10km s−1, and τ = H/Cs = 20s,
which are typical values for the solar photosphere and
chromosphere. In this case, B0 ' 500G if it is assumed
ρ0 = 2.5× 10−7g cm−3. However, it is noted that our re-
sults are valid for any values of Cs,H, ρ0, because our
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Fig. 1. Convection zone and photosphere (and chromo-
sphere, corona) adiabatic temperature gradient a=0.0 den-
sity, pressure, magnetic pressure are a static pressure balance
in initial perturbation: local and random velocity (Vz) x, y
periodic boundary, zmin rigid boundary, zmax free boundary

model is non-dimensional and scale-free.

2.3. Unperturbed State (Initial Conditions)

We consider that the initial state is in magnetohydro-
static equilibrium. The gas layer is initially composed of
three regions (see figure 1): a convectively stable layer
represents a very simplified model of the solar photo-
sphere/chromosphere and corona. The temperature is
nearly constant in the upper hot layer (corona) and in the
lower cold layer (photosphere/chromosphere). We take
the height z = 0 to be the base height of the photosphere,
and the initial distribution of temperature in the photo-
sphere/chromosphere and the corona is

T (z) = Tph +
1
2
(Tcor −Tph)

[
tanh

(
z − zcor

wtr

)
+1

]
, (7)

where Tcor and Tph are the respective temperatures in the
corona and in the photosphere/chromosphere respectively,
zcor is the height of the base of the corona, and wtr is the
temperature scale height in the transition region. We take
wtr = 0.6H and zcor = 13H in all our calculations.

We assume that the magnetic field is initially horizon-
tal, B = (Bx(z),By(z),0), and is localized under the pho-
tosphere. The initial density and pressure distributions
are calculated numerically using the equation of magne-
tohydrostatic pressure balance:

d

dz

[
p +

B2
x(z)+ B2

y(z)
8π

]
+ ρg = 0, (8)

where

Bx(z) =

(√
8πp(z)
¯(z)

)
cosθ(z), (9)

(a)  no magnetic shear case

(b) magnetic shear case

X

Z
Y

Fig. 2. Degree of magnetic shear in the magnetic sheet; (a)
is for the case no magnetic shear and (b) is for the case with
magnetic shear. In the upper magnetic layer magnetic direc-
tion is parallel to x direction for both cases. In the lower
magnetic layer it is parallel to y direction (θ = 1/2π) for the
case with shear.

By(z) =

(√
8πp(z)
¯(z)

)
sinθ(z), (10)

and the plasma ¯ is the ratio of gas pressure to magnetic
pressure, with

¯(z) = ¯∗/f(z) (11)

where

f(z) =
[
1+ tanh

(z − z0

w0

)][
1− tanh

(z − z1

w1

)]
/4. (12)

Here ¯∗ is ¯ at the center of the magnetic flux sheet,
z0 and z1 = z0 + D are the heights of the lower and up-
per boundaries of the magnetic flux sheet, and D is the
vertical thickness of the magnetic flux sheet. We use
D = 4H ' 800km, and w0 = w1 = 0.5H, for all of our
calculations and take ¯ to be nearly constant inside the
flux sheet(z0 ≤ z ≤ z1). The magnetic field direction θ(z)
is given by

θ(z) = θ00π(z1 − z)/D, (13)

when z0 ≤ z ≤ z1, θ00 ≥ θ(z)≥ 0. Figure 2b shows that the
magnetic field lines at each height have different horizontal
directions.

The free parameters are ¯∗, zmin (depth of the convec-
tion zone), and z0 (base height of the flux sheet). We will
use the case with ¯ = 1, zmin = −8H ' −1200 km and
z0 =−4H '−800 km. Although these values are not real-
istic for the actual solar convection zone (e.g., Spruit 1974;
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Fig. 3. One-dimensional (z-) distribution of the initial
density (solid curve), pressure (dashed curve), magnetic
field strength (dash-dotted curve), and temperature (dotted
curve). ρ0,p0,T0,B0 denote the initial density, pressure, tem-
perature, and magnetic field strength at z = zmin (z =−8H),
respectively.

Spruit et al. 1990), they are acceptable for our first at-
tempt to study the fundamental nonlinear interaction be-
tween the magnetic field and convection just below the
photosphere.

The initial temperature (T ), density (ρ), gas pressure
(p), and magnetic field strength (|B|) distributions for our
base model (zmin =8,z0 =−4H,¯∗ =1) are shown in figure
3.

2.4. Boundary Conditions

We assumed a rigid conditional wall at z = zmin and
z = zmax, and periodic boundaries at x = xmin, y = ymin

and x = xmax, y = ymax, respectively. The rigid wall is
the simplest and most reliable condition to implement of
z = zmin in the high-energy density region of the con-
vection zone. The difficulties are particularly acute here,
since the density ratio between the convection zone and
the corona is » 10−7, so that small errors generated at
the free boundary at z = zmin are enormously amplified
by the steep density gradient in the photosphere and chro-
mosphere as they propagate from the convection zone into
the corona. The effect of the rigid boundary at z = zmax

is small, since the energy density is smallest in the com-
putational box.

2.5. Numerical Method

Non-dimensional MHD equations (1)-(6) are solved
numerically by using a modified Lax-Wendroff scheme
(Rubin and Burstein 1967) with artificial viscosity
(Ritchmyer & Morton 1967), as in previous studies (e.g.,
Shibata 1983; Matsumoto et al. 1988; Shibata et al.
1989a, 1989b, 1990b; Nozawa et al. 1992; Matsumoto et
al. 1993, 1998).

The magnetohydrostatic gas layer shown above is unsta-
ble for the interchange and Parker instabilities. In order

to start the instability, small velocity perturbations of the
form

Vz = f(z)ACs cos
[
2πx

λx

]
cos

[
2πy

λy

]
(14)

are given initially within the finite horizontal domain
(|x,y| ≤ λ/2), where λ is the wavelength of the small ve-
locity perturbations. A typical case is λx =λy(ky/kx =1).
Cs is the sound speed in the photosphere, and A is the
maximum value of Vz/Cs in the initial perturbation. In
the two-dimensional case (model 1), a small velocity per-
turbation is used of the form

Vx = f(z)ACs sin
[
2πx

λ

]
. (15)

Although the distribution of the velocity given by equa-
tion (14) is not exactly equal to an eigenfunction, the
growth rate of the perturbation in the linear regime agrees
well with that obtained from the exact linear analysis,
as will be discussed in Appendix (see also Matsumoto et
al. 1988; Shibata et al. 1989a).

The mesh size is ∆z0 = 0.15H for z ≤ zcor, and this
slowly increases up to ∆zmax = 0.375H = Tcor/10×∆z0

for z ≥ zcor, and ∆x,∆y = 0.2. The total number of mesh
points is Nx ×Ny ×Nz = 300× 300× 203, and the total
area is [xmax×ymax×(zmax−zmin)]=(60H×60H×43H).
The parameters of the models studies here are summarized
in Table 1.

3. Nonlinear Simulation results

3.1. The case of 2D (model 1)

Let us first discuss the typical nonlinear evolution of the
Parker instability in the 2D case. Figures 4 and 5 show
the typical results for the no shear mode.

All results agree with those of Shibata et al. (1989a)
except for the time sequence; the time evolution of the
emerging flux loop is slow compared with Shibata et al.
(1989a,1989b), because the perturbation amplitude A is
taken to be 10−3. We can see a self-similar evolution for
the density (figure 5a) and magnetic field strength (figure
5d),

ρ ∝ z−4, B ∝ z−1. (16)

In particular the plasma ¯ decreases to less than 0.1,
which indicates that the magnetic pressure is dominant
against gas pressure and the magnetic loop continues to
rise up (figure 5f). The magnetic pressure dominance
leads to forming the current-free magnetic loop.

3.2. The case of no magnetic shear with a localized per-
turbation (model 2)

Let us now discuss the 3D cases. Figures 6, 7, and
8 show typical results in the no shear mode. Figure 8c
indicates that the magnetic field in the y-direction emerges
from the narrow region and expands horizontally in the
photosphere. The 3D display in figures 8a,b show that the
magnetic field lines become almost vertical in the region
where the magnetic field is concentrated.
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(a)

(b)

Fig. 4. 2D distribution of (a) magnetic field strength

|B| =
√

B2
x + B2

z (gray scale colors), velocity field (vectors),
density (contours), (b) magnetic field lines (lines) and density
(gray scale colors), at t/τ0 = 80 for 2D case (model 1). The
velocity length 1H is 1Cs (sound velocity).

In the upper photosphere the magnetic field is paral-
lel to the photospheric plane, and expands horizontally.
Since the scale height of the photosphere is smaller than
the thickness of a magnetic sheet, the gas pressure outside
of the sheet decreases rapidly. Hence, when the magnetic
field emerges a little into the photosphere, magnetic flux
expands horizontally until the magnetic pressure of the
sheet balances with the surrounding gas pressure.

The velocity vectors also show that plasma expands in
the horizontal direction more than the vertical direction
(see figures 8b,c,d). This result implies that the rise of the
magnetic loop is stopped at lower heights (< 10H) and
the distribution of magnetic pressure is in a new state of
magnetohydrostatic equilibrium.

Although in figure 8a the characteristic wavelength in
the x-direction is comparatively long 27−32H, the charac-
teristic wavelength in the y-direction is short 2−6H. But

Fig. 5. Distribution in z of (a) the vertical component ve-
locity (Vz), (b) the density(logρ),(c) the local Alfve’n speed
(VA), (d) the horizontal component of the magnetic field
(logB), (e) the magnetic pressure (log(∆Pm/∆z)), and (f)
plasma β (gas pressure/magnetic pressure) at x = 0 (middle
of the rising loop) for model 1 (the case shown in figure 4) at
t/τ0 = 0,50,60,70,80.

at z = 7H (see figure 8b) the characteristic wavelength in
both the x and y-directions increase to 35−40H, because
of the inverse cascade effect (Hachisu et al. 1992).

In figure 8a at t/τ0 = 50 the top of the magnetic loop
reached z/H = 14H. In the last stage the magnetic loop
does not rise any more. Figures 8b,d,e show the distri-
butions of density, magnetic field strength and magnetic
pressure which are approximated by

B ∝ exp
(− ∆z

HB

)
, ρ ∝ exp

(− ∆z

Hρ

)
, Pm ∝ exp

(− ∆z

HPm

) ∝ exp
(− 2∆z

HB
),(17)

with HB »4,Hρ »2,HPm »2. What is the physical mean-
ing of these distributions? They are similar to typical dis-
tributions of the magnetic field and plasma in magnetohy-
drostatic equilibrium with uniform temperature and con-
stant plasma ¯, when the magnetic field is horizontal. In
fact, an exact equilibrium solution predicts Hρ =(1+ 1

β )H,
HPm = Hp = Hρ. In our simulation results, ¯ = 0.7− 1.0
(see figure 8f), so that we have Hρ » 2 − 2.3, which is
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(a) (b)

(c) (d)

Fig. 6. Nonlinear simulation results for the case of no mag-
netic shear, where a localized perturbation is initially assumed
(model 2). (a) shows distribution of Vz on the photosphere
surface (z = 0H). (b) shows velocity distribution in the up-
per photosphere (z = 7H). Magnetic field(color), velocity
field(vector), density(contour line) on y-z surface for (c) and
on x-y surface for (d) are shown.

consistent with direct simulation results (Hρ » 2). Other
relations Hρ »HPm »HB/2 are also consistent with mag-
netohydrostatic equilibrium theory.

Note that the plasma ¯ =0.7−1.0 in the rising magnetic
loop is larger than that in 2D (¯ » 0.1). This is because
magnetic flux rapidly expands in the horizontal direction
in the photosphere, so that the magnetic field becomes
weak. Hence the magnetic flux cannot expand into the
corona, and instead tends to be in magnetohydrostatic
equilibrium in the photosphere and chromosphere.

3.3. The case of magnetic shear with a localized pertur-
bation (model 3)

Figures 9, 10, and 11 show the results in the 3D calcu-
lation for the shear mode.

In figure 9a and 10a, the loop which passes the origin
(X = 0,Y = 0) emerges at » 45◦ angle to the x-direction,
while in the case of the no shear the loop is parallel to
the x-direction. This is because the magnetic sheet at the
depth where the field line is parallel to the 45 degrees rises
up in the photosphere at t/τ0 = 50. In the last stage of
the calculation after t/τ0 = 50, a deeper magnetic sheet
rises up and it becomes a loop with an angle greater than
the 45 degrees.

Figure 9c indicates that the area where the magnetic
sheet rises up in the photosphere is larger than that of the
no shear. In the shear case, the velocity vectors show that
the plasma expand in the horizontal direction more than
the vertical direction (see figures 9b,c,d), and the mag-
netic field expands at middle heights (6− 12H). Figure
11a shows that the characteristic wavelength in the x-

Fig. 7. Perspective view of the magnetic field at the epochs
t/τ0 =55 for the case of no magnetic shear, where a sinusoidal
perturbation is initially assumed(model 2).

direction is comparatively long 13H and the characteristic
wavelength in the 45◦-direction is somewhat short 4−8H.

Similarly to the no shear case, the plasma density and
magnetic field strength distribution in the shear mode case
are also approximated by exponential ones (eq.17) with
Hρ » 2,HB » 4 (see figures 11b,d) and the plasma ¯ » 1
in the magnetic loop (see figure 11f).

3.4. The case of a random perturbation (model 4 and
model 5)

Figure 12 shows the results in the case of random initial
perturbation for both no shear and shear modes. In the
early stage (' t/τ0 = 30 (see figures 12a,d)) the charac-
teristic wavelength in the y-direction is small and equal
to λ = 3.5H(» 60H/17). Subsequently the wavelength in-
creases to λ = 4.6H(» 60H/13) at t/τ0 = 40 (see figures
12b,e), and λ = 5.5H(» 60H/11) at t/τ0 = 50 (see figures
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Fig. 8. Distribution in z at (x, y) = (0, 0) (middle of the
rising loop) for model 2 (the case of no shear mode) shown in
figure 8 at t/τ0 = 0,50,60,70 in x,y = 10H, and other remarks
are the same as in figure 5. The dashed lines in (b),(d) and
(e) indicate the lines of ρ ∝ exp(−∆z/Hρ) with Hρ = 2.0,
B∝exp(−∆z/HB) with Hm =4.0, and Pm∝exp(−∆z/HPm )
with HPm = 2.0. In (e) the dashed lines is beta = 0.7.

12c,f). In figure 13b,d at t/τ0 =50 the magnetic loop rises
at z/H = 19H in the no shear case and at z/H = 13H in
the shear case. The distributions of plasma density and
magnetic field are basically the same as those in previous
3D cases (eq. 17).

3.5. The case of a periodic perturbation (model 6 and
model 7)

Figure 14 shows two cases of simulation results in which
the initial perturbation is periodic in the kH =0.7,λx,λy =
12.6H,kx = ky = 0.5,ky/kx = 1 no shear and shear modes
case. In both cases, the distributions of the density, pres-
sure and magnetic field do not correspond to those of the
magnetohydrostatic equilibrium but of the potential field
(eq. 16). That is the expansion of the magnetic loop dose
rising to corona, and the physical processes are basically
the same as those in the 2D case.

(a) (b)

(c) (d)

Fig. 9. Nonlinear simulation results for the case of mag-
netic shear, where a sinusoidal perturbation is initially as-
sumed(model 3), and other remarks are the same as in figure
7. In (e) the dashed lines is beta = 0.9.

3.6. Loop height for different shear case

Figures 15 and 16 show the loop height in each sim-
ulation result at t/τ0 = 55. When ky/kx < 1, it is easy
to cause the Parker instability, so each loop height goes
up comparatively high, to 15− 24H. On the other hand,
in the ky/kx > 1 case the interchange instability occurs
easily, and the height monotonously decreases when ky is
larger.

When ky/kx < 1, h/Lx and h/Ly are 0.3−0.5, the loop
becomes horizontally expanded. Hence, when ky/kx > 1,
the loop height increases with shear angle θ00 (eq. 13),
and the height increases when ky is larger. This is basi-
cally due to the stabilizing effect of magnetic shear in the
interchange model.

4. Summary and Discussion

4.1. Summary

Three dimensional simulations show the followings:

• When the magnetic field emerges into the photo-
sphere with the localized and random initial pertur-
bation, the flux expands horizontally and does not
go upward. At that time, the distributions of mag-
netic field strength, density, and pressure are writ-
ten as exp(−∆z/H(m,ρ,p)) as in magnetohydrostatic
equilibrium, and the plasma ¯ of magnetic loop is
0.3− 1.3 (magnetic field strength is weak).

• When a periodic perturbation is initially assumed,
the emerging flux rises up to the corona and the
magnetic field expands like a potential field as in
two dimensional typical case. The plasma ¯ of mag-
netic loop is lower (» 0.01− 0.1) than that of three
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Fig. 10. Perspective view of the magnetic field at the epochs
t/τ0 = 55 for the case of magnetic shear, where a sinusoidal
perturbation is initially assumed (model 3).

dimensional case.
• When there is no magnetic shear, magnetic flux can-

not rise as a whole (i.e., as a global or thick magnetic
loop), but rise as fragmented flux tubes because of
interchange instability. In this case, the flux tube
expands significantly in a horizontal direction, so
that the average magnetic pressure decreases very
much and hence the tube soon stops at low height.
However, when there is magnetic shear, the inter-
change mode is stabilized (see Appendix for a lin-
ear stability analysis), so that the tube can rise as
a whole and hence the height of the loop becomes
higher (see Fig. 16). For the same reason, the loop
height increases with shear angle or ky.

Fig. 11. Distribution in z at (x, y) = (0,0) (middle of the
rising loop) for model 3 (the case of shear mode) shown in
figure 9 at t/τ0 = 0,50,60,70 in x,y = 10H, and other remarks
are the same as in figure 5.

4.2. Discussion

Shibata et al. (1989a) and other studies show that in
two dimensional calculations the emerging magnetic flux
rises into the corona, with the density given by ρ∝z−4 and
the magnetic field given by Bx ∝ z−1, due to a potential
magnetic field. In the momentum equation the gravity
term ρg » z−4 is smaller than the magnetic term B2/dz »
z−3, and therefore the expansion of the magnetic loops is
not stopped in the two dimensional model.

When a periodic perturbation is initially assumed, the
emerging flux rises up to the corona and the magnetic field
expands like a potential field. This special case is similar
to Model 10 of Matsumoto et al. (1993) where the initially
straight magnetic tubes are placed side by side. Because
the emergence of each tube occurs at the same time, the
expansions are blocked in the horizontal direction by each
other and so they rise in the vertical direction. In this
case the emerging loop structure is similar to the two di-
mensional case(see figure 17a).

This result explains why a twisted magnetic tube rises
up into corona in the cases of Magara, Longcope (2003)
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 12. Nonlinear simulation results for the case of no mag-
netic shear mode (left; a,b,c; model 4) and of magnetic shear
mode (right; d,e,f; model 5), where a random noise perturba-
tion is initially assumed. These figures show distribution of
Vz on photosphere surface (z = 0H) at t/τ0 = 30,40,50.

and Fan, Gibson (2004). The tube is twisted very strongly.
Because the interchange instability occurs on the surface
of the tube, the flux tube expands up both horizontally
and vertically. The horizontal expansion is blocked on
both sides by other emerging flux. However, after the
photosphere is full of magnetic field, the flux emerges from
the upper photosphere to the corona in realistic simulation
of the solar atmosphere (see figures 13b). The critical
wave length λc in the photosphere is estimated:

λc » 2πH(1+
1
¯

) (18)

When ¯ = 0.5, we find λc » 18H. In fact, figure 13b
shows that the wave length of emerging flux into corona is
roughly » 18H in agreement with the above estimate. As
a localized perturbation is initially assumed, the emerging
flux expands in the photosphere (see figure 17b). When
random perturbation is also initially assumed, each loop
top of emerging flux is different and magnetic loop ex-
pands horizontally like the growth of localized perturba-
tion loop (see figure 17c).

In figure 18a at t/τ0 = 35− 40, the expansion velocity

(a)

(b)

(c)

(d)

Fig. 13. Nonlinear simulation results for the case of no
magnetic shear mode (left) and of magnetic shear mode
(right), where a random noise perturbation is initially as-
sumed (model 4 and model 5). Upper figures show distri-
bution of Vz on the upper photosphere surface (z = 7H) and
lower figures show magnetic field(color), velocity field (vec-
tor), density (contour line) on x− y surface.

(a)

(b)

(c)

(d)

Fig. 14. Nonlinear simulation results for the case of no mag-
netic shear mode (left; model 4) and magnetic shear mode
(right; model 5), where a periodic perturbation is initially
assumed, and other remarks are the same as in figure 12.
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2  /kx

h
Lx

Ly

B

X

Z Y

π
2  /kyπ

Fig. 15. Definition of h,Lx,Ly in a loop.

in the horizontal direction is 1.0− 1.5Cs. This velocity is
estimated by assuming that the kinetic energy is equal to
the magnetic energy, ρv2 » B2/(8π). Where ρ » p/C2

s ,
v2 » B2/(8πp/C2

s ) = C2
s /¯. If ¯ = 1, v » 1Cs =10km/s.

Although this velocity is large enough compared to the ob-
served typical value the photosphere, the expansion time-
scale is very short (' 5 minutes, see figure 18b) and the
size is small (' 4000km). Therefore such phenomena may
be observed with high resolution observed by La Palma,
Swedish Vacuum Solar Telescope (De Pontieu et al. 2004),
but future observations such as Solar-B will reveal these
detailed features of emerging flux.
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2

0.5
no shear

2

0.5

no shear

no shear

θ00
=2π

θ00
=π /2

Fig. 16. The normalized loop height (h/H,h/Lx,h/Ly), as
a function of ky/kx at t/τ0 = 55 in the case of the localized
perturbation. Numbers indicate the shear angle θ00(radian).
Here, h is the height of emerging flux loop, Lx is the half
length of the loop and Ly is the width of the loop (see figure
15).
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(a)

(b)

(c)

Fig. 17. Schematic pictures of emergence in (a) strong
twisted flux tube, (b) weak twisted flux tube or magnetic flux
sheet, and (c) random perturbation with no magnetic shear.

Fig. 18. Time evolution of the y component of the velocity
and magnetic strength at x = 0H,y = 10H,z = 5H, for the
case shown in model 2.

Table.1 Models And Parameters

model 2D or 3D kxHorkH,λ shear ky:kx
1 2D 0.31,20H 0.0 —
2 3D 0.5,12.6H 0.0 1:1
3 3D 0.5,12.6H 0.5π 1:1
4 3D random 0.0 1:1
5 3D random 0.5π 1:1
6 3D 0.5,12.6H,periodic 0.0 1:1
7 3D 0.5,12.6H,periodic 0.5π 1:1
8 3D 0.5,12.6H 2.0π 1:1

2a 3D 0.5,12.6H 0.0 1:8
2b 3D 0.5,12.6H 0.0 1:4
2c 3D 0.5,12.6H 0.0 1:2
2d 3D 0.5,12.6H 0.0 2:1
2e 3D 0.5,12.6H 0.0 4:1
2f 3D 0.5,12.6H 0.0 8:1
3a 3D 0.5,12.6H 0.5π 1:8
3b 3D 0.5,12.6H 0.5π 1:4
3c 3D 0.5,12.6H 0.5π 1:2
3d 3D 0.5,12.6H 0.5π 2:1
3e 3D 0.5,12.6H 0.5π 4:1
3f 3D 0.5,12.6H 0.5π 8:1
8a 3D 0.5,12.6H 2.0π 1:8
8b 3D 0.5,12.6H 2.0π 1:4
8c 3D 0.5,12.6H 2.0π 1:2
8d 3D 0.5,12.6H 2.0π 2:1
8e 3D 0.5,12.6H 2.0π 4:1
8f 3D 0.5,12.6H 2.0π 8:1

Appendix 1. Linear Stability Theory and
Comparison with Nonlinear Simulation

A.1.1. Linear Theory

In order to study the main characteristics of the lin-
ear instability of the magnetic flux sheet with magnetic
shear, we analyze the linear stability of the flux sheet
with a normal-mode method similar to that of Horiuchi et
al. (1988). We consider the growth of a small perturbation
which has a functional form δW ∝ exp(iωt+ ikxx+ ikyy),
where W is the physical quantity (ρ,p, v,B), and δW is
its perturbation. The linearized equations are the same as
those in Horiuchi et al. (1988) and Nozawa et al. (1992),
and the eigenvalues (ω) and eigenfunction are calculated
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Fig. 19. Normalized growth rate (in units of Cs/H) as a
function of k for ky/kx = 0,1,2,4,∞(1.e10) for (a) the case of
no magnetic shear mode and (b) the case of magnetic shear

mode. β∗ = 1.0,γ = 1.05 are assumed. kH =
√

k2
x + k2

yH

.

numerically.
Figure A1 shows the growth rates iω as a function

of horizontal wave number kH = H
√

k2
x + k2

y for two

cases, (a) no shear mode, and (b) shear mode, when
¯∗ = 1,γ = 1.05,D = 4H,zmin =−8,z0 =−4H,zcor = 13H
and Tcor/Tph = 25.

The numbers attached to each curve indicate the ra-
tio ky/kx. When the wavenumber along the field line
(kx) is fixed, the growth rate increases with perpendic-
ular wavenumber ky. Thus a perturbation with a shorter
wavelength perpendicular to the magnetic field line grows
faster than perturbations with longer-wavelengths.

The linear growth rate of our non-sinusoidal perturba-
tions (14) is the same as that of sinusoidal (single plane
wave) in the shear mode case because the non-sinusoidal
perturbation can be decomposed into two plane wave per-
turbations whose wave vectors are (kx,ky) and (kx,−ky).

Since perturbations are added in the parallel direction
of the magnetic field on the top surface of the flux sheet,
the Parker mode dominates at long wavelengths (ky/kx =
0), where the linear analytic growth rate has a relative
maximum value iw » 0.124 in kH = 0.275(λ = 23H).

When ky/kx = 0, the growth rate is larger in the no
shear mode case (a) than that in the shear mode case (b).
This is because the interchange mode is coupled in (b),
even for ky = 0, since there is a layer where kx ⊥B in the
sheared flux sheet.

On the other hand, the growth rate is generally smaller
in (b) than in (a) for short wavelengths. This is because
the interchange mode tends to be stabilized by the mag-
netic tension force in the sheared magnetic field.

Therefore in the case of shear mode (b), the maximum
growth rate of ky/kx = 0 is larger than that of ky/kx =
1,2, because the bottom of the sheet is unstable because
kx ⊥ B.

With B = 0 and ky/kx = 1010 in the no shear mode
case, the growth rate does not have a maximum and in-
creases monotonically with the wavenumber. The growth
rate of this case is the same as the pure Rayleigh-Taylor
instability which is am

√
kg. Here am is a parameter of

the magnetic interchange instability, and the value of am

is 0.33.

t/t0=0

20

60

40

log|Vx/Cs|

λ/H=20
30

15

60

Fig. 20. Time evolution of the x component of the ve-
locity at z = 0 for the case shown in model 1. Figure
A2a is result of mode analysis. Horizontal axis is wave
number (k(xmax − xmin)/2π = k′, xmax − xmin = 60H)
of system and vertical axis is log(power). Full line
with ∗ is t/τ0 = 0, dashed line with ◦ is t/τ0 = 20,
dot-dash-dot-dash line with × is t/τ0 = 40, dotted line with
2 is t/τ0 = 60. Figure 6b is mode analysis and time evo-
lution of log |Vx|. Full line is λ = 60H(k′ = 1, kH = 0.10),
dashed line is k′ = 2(λ = 30H,kH = 0.21), dot-dash-dot-dash
line is k′ = 3(λ = 20H, kH = 0.31), dotted line is
k′ = 4(λ = 15H,kH = 0.42), and full line with ∗ is time evo-
lution of log |Vx/Cs| at the point of (x,y, z) = (0,0,0). The
dotted line represents the growth rate obtained from linear
stability analysis (iω = 0.124) in λ = 20H(k′ = 3,kH = 0.314).

A.1.2. 2D Nonlinear Simulations

The horizontal wavelength (λ/H = 20) of the initial
perturbation is close to the wavelength of the maximum
growth rate for ¯ = 1, and the growth rate is 0.12 (see the
thick dotted line in figure A2b). Since the perturbation
given in the initial condition is not an eigen function, the
most unstable wavelength does not grow but other modes
are excited by the nonlinear effect.

The above results show that the instability grows on the
wavelength given in the initial conditions in the 2D case.

A.1.3. 3D Nonlinear Simulations with Single or Random
Perturbations

Figure A3 shows the results in the case of random initial
perturbation for both the no shear and shear modes.

It is found that the growth rate in this case is 0.4.
Comparing this value with linear theory, we find the cor-
responding wavenumber is kH =1.7(λ=3.7H) in ky/kx =
∞. This λ=3.7H is consistent with 18×∆x(=∆y=0.2H)
which agrees with the maximum wavelength resolution of
the numerical scheme.
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