Transient Science with Wide Field Survey and 3.8m Telescope - 広視野突発天体サーベイと3.8m望遠鏡によるサイエンス -

Masaomi Tanaka 田中 雅臣 (National Astronomical Observatory of Japan)

On behalf of KISS collaboration Tomoki Morokuma (Univ. Tokyo) Nozomu Tominaga, Kensho Mori (Konan Univ.) Frontier of Transient Survey
 KISS (Kiso Supernova Survey) and Synergy with 3.8m Telescope
 Future Plan

Stellar Evolution - Supernova

C: Ohio State University

Too late with typical 2-3 day cadence

SN shock breakout

Figure from N. Tominaga

Star formation tracer at high redshift

progenitor star

> a few days

Figure from T. Morokuma

Frontier of Transient Survey
KISS (Kiso Supernova Survey) and Synergy with 3.8m Telescope
Future Plan

KISS: KIso Supernova Survey

- Extremely high cadence
 - I-hr cadence
 - 4 deg² FOV
 - 3 min exposure
 - ~ 21 mag in g-band
 - ~50-100 deg² /day

- I00 day observations/yr (around new moon)
- High SFR field (< 200 Mpc, 30-100 Msun/yr)
 2012 Apr: Dry run 2012 Sep: Main survey -

KISS Ist year

Kiso observatory

KISS pipeline

standard reduction

image subtraction

source detection

< 10 min ~ 50GB/day

<u>KISS database</u>

source info

cut-out images

KISS database

KISS interface

Amateur astronomers

Ref

cut-out images

Sub

New

37 SN candidates

Akeno 0.5m

Kiso Im

KISS collaboration

Survey members

- Tomoki Morokuma (PI), Nozomu Tominaga, Masaomi Tanaka, Kensho Mori, Koji Kawabata, Yoshihiko Saito, Nobuharu Ukita, Michael Richmond, Yuji Urata
- Indian Institute of Astrophysics
 - Devendra Sahu

Carnegie Supernova Project (CSP)

• Eric Hsiao, Maximilian Stritzinger, Mark Phillips, Nidia Morrell, Carlos Contreras, Francesco Taddia

Telescopio Nazionale Galileo (TNG)

Paolo Mazzali, Emma Walker, Elena Pian

• SNFactory

- Greg Aldering
- Russian Institutes
 - Dmitry Tsvetkov, Nikolay Pavlyuk

Synergy with 3.8m Telescope Rapid follow up

- High speed pointing of 3.8m telescope is critical (1 min, Nagata-san, Kurita-san)
- Rapid communication (< I hr) Target feed takes ~ I0-60 min
- Automatic response
- Low resolution spectroscopy (R~500, v~500 km/s)
 - IFU is preferred (Ota-san, Matsubayashi-san) confirmation image + spectroscopy
 占有性・機動性が最も重要な要素
 No Transient Left Behind

By-products from high-cadence survey Variable QSO • ~ | | 0 • Variable stars • ~ 80 (High Galactic latitude) Rapid flare (< | hr) • ~ 5 (after Maehara et al. ...) (High Galactic latitude) Nogami-san's talk

Spectroscopy during the flare!?

 Frontier of Transient Survey
 KISS (Kiso Supernova Survey) and Synergy with 3.8m Telescope
 Future Plan

Gravitational Wave -Electromagnetic Wave Astronomy

KAGRA 2017Neutron star merger
I-10 events / yr
EM counterpart Ota-san's talk

EM signature from NS-NS merger

- On-axis short GRB
 very rare
 Off-axis radio emission
 delayed (~l yr)
 no guarantee of association
- "kilonova" (macronova)

could be common if r-process occurs

Neutron star merger @ 200 Mpc

Transient Science with 3.8m Telescope

- (Need wide field survey) Kambe-san
- Rapid follow up for high-cadence transient survey
 - Shock breakout of supernovae
 - Rapid flare
- Critical role in GW-EM astronomy
 - 3.8m Telescope + Im Schmidt (wide field)
- Hope for 3.8m Telescope
 - Low resolution spectroscopy (R~500)
 - IFU (image and spec, reducing time loss)
 - Rapid communication/automatic response