

近赤外ドップラー装置による 晩期型星周りの惑星サーベイ

- 1. INTRODUCTION:ドップラー法での地球型惑星探し
- 2. Subaru IRD-Doppler survey
- 3. 3.8m用ドップラー探索での2つのアプローチ

IRD惑星候補の高頻度フォローアップ

若い晩期型星における巨大惑星探索

4. SUMMARY

ドップラー法での惑星の検出限界

M型矮星における検出限界と ハビタブルゾーン(HZ)

地球質量惑星検出への動向

- M型矮星のドップラー探索
 - California サーベイ (Marcy+)
 - HARPS サーベイ (Bonfils+)
 - □ 1.86M_{Earth}, GJ581 e の発見
 - McDonald サーベイ (Endl+)
 - M2K サーベイ (Fischer+)
 - NIRSPEC (Blake+ etc.)
 - CRIRES & IRCS (Seifahrt+)

Subaru IRD-Doppler survey Searching for Earths around Late-M dwarfs

IRD: InfraRed Doppler instrument
 望遠鏡: すばる望遠鏡(口径8.2m)
 観測波長域: 0.97-1.75um (Y, J, H-band)
 波長分解能: 70,000 (3ピクセルサンプリング)
 波長校正: アストロ・コム(レーザー周波数コム)
 →1m/sの精度で視線速度測定を可能にする

<u>ドップラー法で地球型惑星を狙える観測装置!</u>

Subaru IRD-Doppler survey

- 1m/sのRV精度 & 100星の大規模サンプル
- □ 戦略1: 観測ターゲットの厳選
- □ 戦略2: 視線速度&表面活動同時観測
- □ 戦略3: 高頻度多回数観測
- → 世界で初めて地球型惑星の統計的理解に迫れる!

+フォローアップ体制+理論研究との協力+フレキシブルで豊富な観測時間

 → 地球型惑星の
 特徴と
 ド成と
 バビタビリティに迫る

IRDのサイエンス・ターゲット

M型矮星周りのドップラー惑星探索

分光器	望遠鏡 (口径)	波長分解能	波長校正	RV精度	サンプル 星数	観測開始 (夜数)
HIRES (M2K)	Keck (10m)	70,000	I2Cell	1-5m/s	K7-M4 ~600	2009
CRIRES	VLT (8.2m)	100,000	telluric (CO2), NH3 cell	5-10m/s	M5-L1 ~36	2009
IRCS	Subaru (8.2m)	20,000	NH3 cell	~30m/s	M4-L0 ~60	2010
CARMENES 可視&近赤	Calar Alto (3.5m)	82,000	Uranium-Neon Iamp	1m/s	M0-M6 ~300	2014 (~750)
HZPF (近赤)	HET (9.2m)	50,000	Uranium-Neon lamp / LFC	1-3m/s	M4-M9 ~300	2015 (~200)
SPIRou (近赤)	CFHT (3.6m)	75,000	U/N lamp / LFC Fabry-Perot	1-3m/s	M4-M7? 400-600	2017 (300-600)
ESPRESSO (可視)	VLT (8.2m)	134,000	ThAr / LFC	40cm/s	-M5?	2016?
IRD	Subaru (8 2m)	70 000	IFC	1m/s	M4-M9	2015

LFC: laser frequency comb

ドップラー法での二つのアプローチ

長期高頻度ドップラーサーベイ

#観測時間が必要であるため、他の惑星探しでも観測可能天体数が限られる

□ IRD惑星候補の高頻度フォローアップ

- □ IRDでの観測回数は最大で100程度 → 低質量星なら地球質量惑星検出可能
- IRDで発見した惑星候補の超高頻度観測により、晩期M型矮星で地球質量の惑星を検出を目指す
- □ 天体数を絞って観測を行い、振幅K=0.5m/sのハビタブル惑星を検出する
- □ 晩期型星周りの地球質量惑星の探索
 - □ 観測があまり進んでいない晩期K-早期M型星における地球型惑星の検出
 - □ 観測天体を絞って、長期間のモニター観測を行う

🗅 可視&近赤外同時ドップラー観測

#OAO1.88m/HIDESとの同時観測が有効

- □ 若い晩期型星における巨大惑星の探索
 - □ 惑星系の年齢依存を明らかにする(1000万年~1億年程度の若い星)
 - 惑星形成において、惑星系が1000万年(円盤ガス消失)~1億年(巨大惑星の力学的移動)の間にどのように変わるかは重要
 - 可視&赤外観測で黒点の視線速度への影響を評価することができる

IRD惑星候補の高頻度フォローアップ

3.8m+IRDのサイエンスターゲット

若い晩期型星における巨大惑星探索

- 若い星は表面活動が強い(=黒点が多い) ので、惑星の変化が見られたとしても、惑 星と結論するのが難しい
 - 若い星でのホットジュピターの発見の報告 はあったが、黒点の影響と否定されている
 - Setiawan+08, Huélamo+08
- □ 近赤外&可視の同時観測
 - □ 黒点の影響を見積もる
 - 可視に比べて近赤外だと黒点と光球のコ ントラストが小
 - <u>黒点によるRV変化なら、波長によって</u> かわる → 惑星なら変わらない
 - 可視+近赤外で観測しないと惑星と認められない!
- □ 観測提案
 - HIDES/OAO1.88mで可視RVサーベイ+3.8m
 近赤外フォローアップ

もしくは、可視近赤外同時高分散分光観測

■ 若い太陽型星~50星

惑星の存在が否定された TW HydraeのRV変化

まとめ

■ 近い将来、IRD等の近赤外ドップラー装置による地球型惑星探索へ
 ■ IRDが狙うのは、低質量M型矮星の地球型惑星

□ <u>近赤外ドップラー装置の使い方</u>

- □ IRD惑星候補の高頻度フォローアップ(IRのみでの観測)
- 明るい星に絞って観測を行い振幅K=0.5m/sのハビタブル惑星を検出する
 晩期型星周りの地球質量惑星の探索(IRのみでの観測)
 観測があまり進んでいない晩期K型星における地球型惑星の検出
 若い晩期型星(太陽型星)における巨大惑星探索(IR+可視での観測)
 - 惑星系の年齢依存を明らかにする(1000万年~1億年程度の若い星)

□ 装置要求

- □ 地球質量惑星を狙うのなら: RV決定精度~1m/sが必要
- □ 若い星の惑星探索なら: RV決定精度~5m/sが必要
 - 可視近赤同時高分散分光器+3.8m望遠鏡で観測
 - HIDES/OAO1.88m+近赤外高分散分光器/3.8m望遠鏡