Synergy between Wide Field Transient Survey and 3.8m Telescope - 広視野サーベイと連携した3.8m望遠鏡による突発天体観測 -

Masaomi Tanaka (National Astronomical Observatory of Japan)

Tomoki Morokuma (U. Tokyo), Nozomu Tominaga (Konan), Shigeyuki Sako (U. Tokyo) on behalf of KISS collaboration Synergy with High-Cadence Survey
 Synergy with Gravitational Astronomy

Low resolution spectrograph (ready to use anytime)
Flexible operation/instrument exchange

Survey area (deg²)

Theoretically expected

Figure from LSST Science Book (after PTF collaboration, Rau+09, Kasliwal+,Kulkarni+)

KISS: Kiso Supernova Survey

- Extremely high cadence
 - I-hr cadence <= 2-3 days</p>
 - 4 deg² FOV (KWFC)
 - ~ 20-21 mag in g-band (3 min exposure)
 - ~50-100 deg² /day (SDSS fields, high SFR)
 - ~I00 nights /yr
 - Automatic data reduction

Goal: Detection of shock breakout of supernovae

Kiso I.05m Schmidt telescope

The lst day of the SN = memory of stellar radius Connection between stellar evolution and SN (Talks by Yamanaka-san and Maeda-san)

~80 SN candidates (as of 2014 May)

Follow up spectroscopy

No shock breakout yet (Success rate of spectroscopy ~ 25 %)

Follow up with 3.8m telescope

Spectroscopy with R ~ 500 for 20-21 mag (rapid response is a key)

Synergy with High-Cadence Survey
 Synergy with Gravitational Astronomy

Low resolution spectrograph (ready to use anytime)
Flexible operation/instrument exchange

New astronomy with gravitational waves

2017 -

- Advanced LIGO (US)
- Advanced Virgo (Europe)
- KAGRA (Japan)

NS-NS merger with 200 Mpc ~ 30 events/yr (~0.3-300)

KAGRA

C: NASA

GW alert error box e.g. 6 deg x 6 deg ~ 2000 galaxies (< 200 Mpc)

No electromagnetic counterpart No gravitational wave astronomy

Optical/Infrared emission from NS merger

Numerical relativity

Radiative transfer

Hotokezaka et al. 2013

MT & Hotokezaka 2013

Best with red edge of optical (i band, 0.8um)

Bright models are consistent with GRB 130603B

Very red (R-H > 2.5 mag) Tanvir+13 Berger+13

Early observing runs of GW detectors ## 2015-2016

Singer et al. 2014			2015		2016	
-	Detectors BNS range Run duration No. detections		HL 54 Mpc 3 months 0.091		HLV 108 Mpc 6 months 1.5 rapid full PE	
	median area {	50% CR 90% CR searched	142 deg^2 573 deg^2 122 deg^2	124 deg^2 529 deg^2 88 deg^2	$ \begin{array}{c c} 164 deg^2 \\ 646 deg^2 \\ 129 deg^2 \end{array} $	43 deg^2 235 deg^2 32 deg^2

Horizon distance ~ 50-100 Mpc Localization ~ 200 deg²

Wide survey with Im class telescopes (Similar strategy with KISS) Spectroscopy with 3.8m telescope (R ~ 500)

Very red SED (peak at NIR)
Extremely broad-line (feature-less) spectra

Spectroscopic identification is essential

Matsubayashi-san's talk

"Drill" with Fermi/GBM alert < 3 hr after the alert

possible counterpart (by PTF)

12.5 deg

by Tomoki Morokuma

- Future -CMOS for Kiso Schmidt telescope

By courtesy of Shigeyuki Sako (PI), Soya Todo, Yuki Kikuchi, et al.

c.f. Zwicky Transient Factory (large format CCD)

High cadence

No need to cool

Large FOV Ω

• Fast readout (30 Hz)

Efficient observation f

Survey power = $fA\Omega$

GW alert error box e.g. 6 deg x 6 deg

Kiso/CMOS ~9 deg

Summary

- High-cadence transient survey
 - Survey with I m telescopes
 => Spectroscopy with 3.8m telescope
- Gravitational wave astronomy
 - Identification of electromagnetic counterpart
 - Early observing runs => GW events @<100 Mpc => Spectroscopy with 3.8m telescope
- Future
 - Wider FOV, higher cadence, and more efficient observations

Low resolution spectrograph (ready to use anytime)
Flexible operation/instrument exchange