

山本広大 (京都大学) 2014/05/22 岡山3.8m新望遠鏡による サイエンス・装置・運用ワークショップ

<u>これまでの直接撮像惑星探査</u>

Reference	Telescope	Instr.	Mode	Filter	$ FoV \\ ("\times") $	#	SpT	$\begin{array}{c} \text{Age} \\ \text{(Myr)} \end{array}$	Chauvin+14
Chauvin et al. 2003	ESO3.6m	ADONIS	Cor-I	H, K	13×13	29	GKM	$\lesssim 50$	
Neuhäuser et al. 2003	NTT	Sharp	Sat-I	K	11×11	23	AFGKM	$\stackrel{\sim}{\lesssim} 50$	
	NTT	Sofi	Sat-I	H	13×13	10	AFGKM	$\gtrsim 50$	
Lowrance et al. 2005	HST	NICMOS	Cor-I	H	19×19	45	AFGKM	10 - 60	0
Masciadri et al. 2005	VLT	NaCo	Sat-I	H, K	14×14	28	KM	$\lesssim 200$	
Biller et al. 2007	VLT	NaCo	SDI	H	5×5	45	GKM	$\lesssim 300$	
	MMT		SDI	H	5×5	-	-	-	
Kasper et al. 2007	VLT	NaCo	Sat-I	L'	28×28	22	GKM	$\lesssim 50$	
Lafrenière et al. 2007	Gemini-N	NIRI	ADI	H	22×22	85		10-5000	
Apai et al. 2008^a	VLT	NaCo	SDI	H	3×3	8	\mathbf{FG}	12 - 500	
Chauvin et al. 2010	VLT	NaCo	Cor-I	H, K	28×28	88	BAFGKM	$\lesssim 100$	
Heinze et al. 2010ab	MMT	Clio	ADI	L', M	15.5×12.4	54	FGK	100-500	0
Janson et al. 2011	Gemini-N	NIRI	ADI	H, K	22×22	15	BA	20 - 700	
Vigan et al. 2012	Gemini-N	NIRI	ADI	H, K	22×22	42	AF	10-400	
	VLT	NaCo	ADI	H, K	14×14	-	-	-	
Delorme et al. 2012	VLT	NaCo	ADI	L'	28×28	16	Μ	$\lesssim 200$	
Rameau et al. 2013c	VLT	NaCo	ADI	L'	28×28	59	AF	$\lesssim 200$	
Yamamoto et al. 2013	Subaru	HiCIAO	ADI	H, K	20×20	20	FG	125 ± 8	
Biller et al. 2013	$\operatorname{Gemini-S}$	NICI	Cor-ASDI	H	18×18	80	BAFGKM	$\lesssim 200$	
Brandt et al. 2013^b	Subaru	HiCIAO	ADI	H	20×20	63	AFGKM	$\lesssim 500$	
Nielsen et al. 2013	Gemini-S	NICI	Cor-ASDI	H	18×18	70	BA	50-500	
Wahhaj et al. 2013^a	Gemini-S	NICI	Cor-ASDI	H	18×18	57	AFGKM	~ 100	
Janson et al. 2013^a	Subaru	HiCIAO	ADI	H	20×20	50	AFGKM	$\lesssim 1000$	

23の大規模サーベイで延べ909個(重複あり)の恒星を観測して Fomalhaut b, HR8799 bcde, β Pic b,

κ And b, HD 95086 b, GJ 504 bぐらいの検出例。 ~1%程度

<u>1.より深い直接撮像惑星探査</u> ~より深い(~1M」)撮像での新発見を目指す~ 狙い

- ・他手法(RV,トランジット)で惑星が発見されている恒星にさらに惑星が存在する?
 - planet-planet scatter, free-floating planet capture, etc.....

しかし

- 先行観測から5-100AUの惑星の存在頻度は 上限~10%。

新規装置で大規模サーベイをする理由は……

他観測で存在と質量が分かっている惑星

- 惑星熱放射
 - 従来: 光度→[モデル]→質量
 我々: 質量、光度が別々に測定出来る
 →モデルの検証
- •惑星(大気)反射光
 - (直接撮像では)検出されていない
 - 熱放射と違い惑星の温度に依存しない。
- さらに.....
- ・惑星の光度変動
 - 雲の有無、自転周期 etc...

2.より内側の惑星探査(熱放射)

他観測で質量が分かっている天体を観測!!!

55個

32個

- RV法で検出された惑星の熱放射
 - 1. カタログ(exoplanet ency) 1781個
 - 2. RV観測 554個
 - 3. 惑星の離角が0".1-1".7
 - 4. Dec>-25°
 - 5.5時間の観測で検出可能な惑星 5個
- ・アストロメトリ法(Gaia)で期待される惑星数
 - 全天で50pc以内、1-4AUに1-13M」が1400個
 - 質量・軌道長半径分布が視線速度と同じとしたとき、 検出可能な数 ~30個

<u>より内側の惑星探査(大気反射光)</u> ・反射光は $I_p = I_* p\phi(\alpha) \left(\frac{r_p}{a} \right)^2$ でアルベドp, 惑星半径 r_p 、 軌道長半径aだけに依存。

さらに進んで分光

高コントラストなので分光装置を搭載したとき
 分子線検出、自転速度検出が狙える!!

まとめ

- SEICAをサーベイに使用→1.7個(100天体観測)
- SEICAで他観測で発見された惑星を観測 →40 (5+5+30)個
- SEICAを「新惑星検出」に使うより、既出惑星の「新 たな物理量観測」に用いるべき。
- ・反射光検出:惑星の表層環境、惑星半径etc....
- 分光観測:分子線検出、自転速度検出etc....