<u>補償光学波面センサの比較検討</u>

- 補償光学とは
- ・極限補償光学とは
- ・ピラミッド波面センサ
- ・点回折干渉計波面センサ
- 両センサの比較
 - 測定できる波面情報
 - ダイナミックレンジ
 - 計測を妨げるもの

山本広大/2014.04.12@望遠鏡技術検討会

- 平面波は綺麗なPSFに結像。
- 波面エラーが入るとスペックルが形成される。
- スペックルが惑星検出の邪魔をする。

<u>補償光学とは(2/2)</u>

(主に大気による)波面の乱れを能動的に補正する
 光学系。

http://www.ing.iac.es/PR/wht_info/whtpwfs.html

ピラミッド型プリズムで焦点面の像を 左右に分割して瞳再結像する。

・3.8m京大岡山望遠鏡補償光学Tweeter用センサ として開発中。

 透過/反射の+45°, -45°成分を抜き出すと、参照光/ 被検光の干渉が起こる。光路毎に位相差が異なる

	ピラミッド方式	PDI
直接測定量	右手/左手瞳面強度分 布P _R , P _L	位相差0, π, π/2, -π/2 の干渉光強度分布
得られる物理量	位相エラー	位相エラー
測定の前提	 振幅誤差 << 位相 誤差 星像のStrehl比が 十分高い。 	 観測天体/大気に よる偏光がない。
測定可能範囲	[-λ/4:λ/4], λ/2(Ρ-V)	[-λ/2:λ/2], λ (Ρ-V)
測定を妨げるもの	 波面誤差がないと きの星像の形状/位 置誤差。 Strehl比 波面誤差振幅成分 	 参照光強度分布の フラット性。 入射光の偏光の大 きさ。

透過側の光路だけサバール板の角度を変更

透過側で被検光y成分

PDIの測定方法の変更でなにが変わる

	高ダイナミックレンジ (従来方式)	高コントラストモード (新方式)
直接測定量	位相差0, π, π/2, -π/2 の干渉光強度分布	π/2, -π/2の干渉光強 度分布、参照光0°、被 検光90°強度分布
得られる物理量	位相エラー	位相/ <mark>振幅エラー</mark>
測定の前提	• 観測天体/大気によ る偏光がない。	
測定可能範囲	[-λ/2:λ/2], λ (Ρ-V)	[-λ/4:λ/4] <i>,</i> λ/2(P-V)
測定を妨げるも の	 参照光強度分布の フラット性。 入射光の偏光の大 きさ。 	 参照光強度分布の フラット性。

まとめ

- PDI波面センサはピラミッド波面センサにくらべて ダイナミックレンジ、取得可能な物理量ともに性 能が良い。
- PDI方式の測定方法を少し変更するだけで波面 情報がより多く(位相+振幅)取得できるようになる
- ・他の波面センサとの比較(ツェルニケWFSなど)
- ・実機の組み立て・性能評価