

極限補償光学装置の進捗

本日の発表

- 惑星撮像装置SEICAについて
- ●計算機の進捗(中村)
- •高次波面センサの進捗
- •補償光学装置で狙う天体について
- •まとめ

段階的に高コントラストの 撮像を実現

<u>SEICAの構成+進捗状況</u>

- 補償光学系の光学設計完了
- 筐体の詳細設計中。
- 波面センサ(後述)の評価試験。
 - 今後: キャリブレーション、調整手段の検 討、コロナグラフ製作、T/T鏡の試験。

DM表面のキャリブレーション

DM:32 From -0.25 to 0.25

Linux-OSによるリアルタイム制御システム開発

目的:Windows OSに起因するサンプリング周期の変動を排除

Linux-OSによるリアルタイム制御システム開発

目的:Windows OSに起因するサンプリング周期の変動を排除

<u>高次波面センサ(Tweeter WFS)開発状況</u>

- ファーストライト時点ではシャックハルトマンセンサ(SHWFS)を採用(今回は省略)。
 - 低次WFSのスケールアップ
- SHWFSより高速、高感度、高精度の波面測定 が行える点回折干渉計(PDI)方式の波面セン サ(後述)を開発中。(SHWFSと置き換える)
 - 本PDI波面センサに必要なピンホール-偏光ビー ムスプリッタ(後述)の開発。
 - 予算申請中。
 - 他方式と性能を比較した論文執筆中。

波面の「幾何学的情報」を計測するか「形状(位相)」を測定するか。

曲率センサー(HiCIAO/AO188)etc...

ンシン(SCLXAO) ツェルニケセンサ(Palomar) 点回折干渉計センサーetc...

<u>位相振幅同時測定PDI(paPDI)</u>

PDIの0, π位相差の干渉の代わりに参照光、被検
 光の強度分布を測定→振幅測定が可能

性能評価シミュレーション2.強度測定

入射波面に(強度)振幅変化を与え、測定を模擬。

paPDIは直接振幅を測定しているため、感度が入力に依存しない。
 ZWFSは[変動の大きさ << 1]。

性能評価シミュレーション3. フォトンノイズ

位相φが0.1λの時

各光子数、センサで26回シミュレーション

• 入射波の光子数の影響

[検出面]を差し渡し24pixel,総pixel数449個に 分割。入射<mark>総光子数</mark>を変えて位相測定。

まとめ

- 極限補償光学装置の開発
 - 低次用波面センサ:性能評価おわり。実機製作へ。
 - -制御用計算機:実装中。
 - -高次用波面センサ:性能評価おわり。実機製作へ。
 - -新方式波面センサ:性能評価。ピンホール-PBSの製作。 予算提案中。

	位相測定 レンジ(P-V)	測定可能 な Strehl 比	振幅測 定	光子ノイズ の影響	特色
PDI	$\pm\lambda/2,\pm\pi$	>10%	-	ほぼ無し	位相を高精度で測定出来 る
ZWFS	±λ/10, ±π/5	>90%	<<1	ほぼ無し	簡単な計算で位相・振幅 を導出出来る。
	1 7 / 6	100/			

まとめ

- 位相と振幅を測定出来る波面センサを提案した。
- 測定原理の実証ができた。
- シミュレーションにより、光子ノイズの影響を評価した。

- PDI, r-ZWFSは先行研究と矛盾がない。

	位相測定 レンジ(P-V)	測定可能 な Strehl 比	振幅測 定	光子ノイズ の影響	特色
ZWFS	±λ/10, ±π/5	>90%	<<1	ほぼ無し	簡単な計算で位相・振幅 を導出出来る。
paPDI	$\pm\lambda/4$,	>40%	制限無し		低Strehl比でも測定出来

今後の直接撮像でなにを狙うのか?²⁰他観測で存在と質量が分かっている惑星

- •惑星熱放射 (30-35個)
 - 従来: 光度→[モデル]→質量
 - 我々: 質量、光度が別々に測定出来る
 →モデルの検証
- •惑星(大気)反射光 (~5個)
 - (直接撮像では)検出されていない
 - 熱放射と違い惑星の温度に依存しない。
- さらに.....
- •惑星の<u>光度変動</u>
 - 雲の有無、自転周期 etc...

2. より内側の惑星探査(大気反射光)²⁰ • 反射光は $I_p = I_* p\phi(\alpha) \left(\frac{r_p}{a} \right)^2$ でアルベドp, 惑星半径 r_p 、 軌道長半径aだけに依存。

11/20 さらに進んで分光 • 高コントラストなので分光装置を搭載したとき 分子線検出、自転速度検出が狙える! 107 0.1 反射光 表面マッピ 10⁶ HR8799 b, d, c 1 105 ~60Myr @A型 波長分解能 10 速度分解能(km/s 104 自転速度検出 100 10³ 10³ 分子線検出 100 104 CH_4 , CO, H_2O^- 10 0105 10M_ 10M₁ 1 ~1Gyr@G型 ~100Myr@G型 \bigcirc 106 10-8 10-7 10-6 10⁻⁵ 10^{-4} コントラスト (惑星/中心星)