2018/1/6 望遠鏡および観測装置会議@キャンパスプラザ京都

山本広大(京都大学) SEICA開発チーム

SEICA

惑星撮像装置SEICA[<u>S</u>econd-generation <u>E</u>xoplanet <u>I</u>mager with <u>C</u>oronagraphic <u>A</u>o]

京大岡山3.8m望遠鏡架台

SEICA (Second-generation Exoplanet Imager with Coronagraphic Adaptive Optics)

- ◆ <u>目的</u>: ◆ 0''.2(2AU@10pc)以遠で木星型ガス惑星の検出 /キャラクタリゼーション
 - ◆ SEITに接続可能な(先進的)技術のテストベッド
 - ◆ FPGAによる補償光学制御
 - ◆ 位相計測型波面センサ
 - ◆ ナル干渉型コロナグラフ
 - ♦ スペックルナリング
 - ◆ 干渉撮像計
 - ◆ 分割鏡における高コントラスト 技術の獲得 etc....
- ◆ 京大岡山3.8m望遠鏡に搭載予定
 - ◆ TMTと同じく分割主鏡(18枚)
 - ▶ 国内設置のためアクセスが容易

H.Kawahara, N. Murakami, T.Matsuo, T. Kotani 2014, ApJS, 212, 27

予算状況

• 獲得済

– ABCプロジェクト経費: Woofer WFS実機設計

- TMT戦略経費 : SPLINE(コロナグラフ)実機設計 +Tweeter FPGA制御試験機開発

• 応募中

-基盤S(代表長田):5年(開発3年観測2年)1.66億

タスク名	H30		H31		H32		H33		H34	
	前期	後期	前期	後期	前期	後期	前期	後期	前期	後期
ExAO総合							完了			
波面センサ				完了						
制御システム						完了				
コロナグラフ				完了						
ポストプロセス								完了		
温調チャンバー						完了				
分割鏡対応					完了					
装置チャンバー							完了			
観測遂行										
開発拠点	京都		北海道		国立天文台		岡山			

<u>SEICA: 全体進捗: 前回</u>

- ExAO: Woofer AOの開発進行
 - 実験環境再整備: 岡山上空(フリード長10cm, 風速10m/s)
 - AO実験: 制御実験(@633nm)
 - 実機設計:設計中 (ABCプロジェクト経費) 近赤外ではSR~0.1程度
 - Tweeter制御装置:設計開始(TMT戦略経費)
- ・ コロナグラフ: SPLINE
 - プリズム/サバール板

確保·原理実証済,環境試験中

- 実機製作開始:設計中 (TMT戦略経費)
- ・ ポストプロセス: スペックルナリング方式
 - 原理実証試験準備開始: 物品確保完了, 実証試験中
- 温度管理範囲

- コロナグラフで温度測定、管理の試験

<u>ExAOパート(極限補償光学系)</u>

<mark>傾斜</mark>計測: T/T+Woofer 低速、粗い波面制御

<mark>位相</mark>計測: Tweeter 高速、高精度波面制御

3/24

2.実験系概要

大阪電通大藤田さんスライド

4.現在の状況と問題点 現環境での実験結果

4.現在の状況と問題点

現在

外周側の素子が見るからに改善している様子がわかる.

大阪電通大藤田さんスライド

大阪電通大藤田さんスライド

- 設計中
 - 1.2x1.2m
- Tweeter +SPLINE

• Tweeter+SPLINE

図面省略

<u>SEICA: 全体進捗: 今回</u>

- ExAO: Woofer AOの開発進行
 - 実験環境再整備: 岡山上空(フリード長10cm, 風速10m/s)
 - AO実験: 制御実験(@633nm)
 - 実機設計:設計中 (ABCプロジェクト経費) 近赤外ではSR~0.1程度
 - Tweeter制御装置:設計開始(TMT戦略経費)
- ・ コロナグラフ: SPLINE
 - プリズム/サバール板

確保,原理実証済,環境試験中

- 実機製作開始:設計中 (TMT戦略経費)
- ・ ポストプロセス: スペックルナリング方式
 - 原理実証試験準備開始: 物品確保完了, 実証試験中
- 温度管理範囲

- コロナグラフで温度測定、管理の試験