極限補償光学/波面センサ

〇山本広大(京都大学)、 入部正継,藤田勝(大阪電気通信大), 長田哲也,栗田光樹夫,木野勝, 〇津久井遼(京都大学),河原創(東京大学), 小谷隆行(ABC/NOAJ), 村上尚史(北海道大学), 田村元秀(東京大学/ABC/NOAJ)

本日の内容 • SEICAの紹介/進捗 (山本) • 点回折干渉計方式のWFS (津久井)

2019/11/23 望遠鏡会議 SEICA

SEICA (Second-generation Exoplanet Imager with Coronagraphic Adaptive Optics)

- 0".2秒角以遠(2AU@10pc)で木星質量の惑星の検出 1. /キャラクタリゼーション
- 惑星撮像装置(for TMT)に搭載する先進技術開発・実証 2.

<u>SEICA: ExAO後性能</u>

<u>SEICA: ExAOの仕様と構成</u>

傾斜計測: Tip-Tilt+Woofer 位相計測: Tweeter 低速、粗い波面制御 高速、高精度波面制御

◆ 補償光学	■ 全体光学系:■ 波面センサ:	京都大学 京都大学
	■ FPGA制御装置:	大阪電気通信大学
🔶 コロナグラフ	■ コロナグラフ系:	北海道大学
🔷 ポストコロナグラフ	7 ■ スペックルナリング: ■ 惑星RV分光器?:	北海道大学 東京大学/ABC

^{2020年度末} 2020年度末 ◆開発場所:京都大学 → せいめい望遠鏡ドーム

- '19. ExAO光学系低次補償部まで製作、前置光学系設計 コロナグラフ、筐体製作、赤外カメラ調達、波面センサ原理 実証
- '20. Tweeter製作、波面センサ評価試験、全体試験、 ポストコロナグラフ検討、岡山搬出
- '21. 全体試験、望遠鏡搭載
- ◆予算:
 - a)H31年度 基盤A(長田)2年目1800万
 - ◆カメラ: ~500万(済)
 - ◆光学系:~500万
 - ◆構造系:~400万
 - ◆冷却系:~400万
 - b)H31年度 TMT戦略経費
 - ◆FPGA開発: 240万
 - ◆コロナグラフ: 260万

<u>まとめ</u>

- ◆地球近傍のM型星のハビタブルゾーンに存在する 地球型惑星の直接撮像/分光観測を目指した PSI-blueが提案されている
- ◆PSI-blue/SEIT実現に必要な各要素技術の開発 を複数機関の協力により推進中
 - ◆FPGA、PDI、コロナグラフ、ポストプロセス…
- ◆PSI-blue/SEITのプロトタイプに、せいめい望遠鏡 用の太陽系外惑星撮像装置SEICAを、2021年 度のF.L.目標に開発中