Observations of Fine Scale Structures and Dynamics in Sunspots

Hiroko Watanabe (Kyoto U.)

Advantage in the satellite is **SEEING-FREE!**

Top: Hida Observatory SMART/FISCH Continuum (left) and Hα (right)

> 2013-10-22 NOAA 11875

> Bottom: Hinode SOT Ca II H line 20s cadence

Umbral dot

Courtesy to Joten Okamoto

Umbral dot

	Size	200 - 400 km	THE WAY AND THE	
	Lifetime	typically 10 min (More UDs with shorter lifetime)		
	Apparent proper Motion	Periphery: 0.5-1km/s umbra inward Central: Static		
	Field strength perturbation	a few hundreds Gauss weaker than the surroundings	10,000km Size of one umbral dot	
	Velocity perturbation	Central strong upflow and surrounding diffuse downflow		
Sobotka et al. 1997a,b, Watanabe et al. 2009, Ortiz et al. 2010, ☆ Riethmüller et al. 2013				

Convection

The strong magnetic field inhibit the convective heat transport →dark sunspot

Umbral dot is a manifestation of magneto-convection

revised from Rempel et al. (2009)

Umbral dot is a unique observational target for studying magneto-convection in situ !!

Also useful for subsurface diagnoses !

Umbral Dot Analysis

• Watanabe et al. (2009) performed umbral dot analysis in the framework of magneto-convection

Total amount of 2268 UDs + SP map We can see how the lifetime and size of magneto-convective manifestation depends on its environmental magnetic field

It's like "Parameter Survey"

Umbral Dot Analysis

rise speed and size are inversely correlated to **B**

 3D simulation (private comm. with Dr. Schüssler) produces shorter lifetime in stronger fields.

May be able to give some solid constraints to the simulation settings

Simulation + Analysis

• Bharti et al. (2010) performed "(observational) analysis" on the simulated umbral dots

Bolometric intensity map of 3D radiative simulation (Schüssler & Vögler 2006)

* Please see green points because red points represent different phase from usual umbral dot

 Lifetime also decreases as the field strength gets stronger incompatible with observation

Evolution tracking in-situ

- 1min cadence observation of full Stokes 2D imaging was performed by CRISP/Swedish Solar Telescope
- We could track the evolution of umbral dot in magnetic and velocity fields!

Upflow synchronized with the peak of continuum (0.3 km/s for v_high, 0.5 km/s for v_deep)

Field reduction in the first half (about 50 Gauss), and disappear by colliding into the strong field region

Distribution→Subsurface

 The distribution of umbral dot location in Watanabe et al. (2009) reminds us of "cluster-type sunspot"

Looking into UD distribution may work much more efficiently for subsurface diagnosis than the helioseismology. (c.f.,Schunker et al. 2013)

Background: magnetic field strength Black symbols: umbral dot location for 2268 samples Watanabe et al. (2009)

Inward migration

Important!!

Why the migration is always toward umbra center, better seen in periphery?

* Note that this "speed" is not upflow or downflow, but the apparent motion speed

 We found positive correlation between field inclination and apparent motion speed

Two Models

[Single flux tube model] e.g., Schlichenmaier et al. 1998

• Push their way through the vertical field "forest"

* This simulation is for Evershed flow, but can continues to penumbral grain

[Convection model] e.g., Scharmer et al. 2008

 Inward migration is the successive appearance of convective plasma

Gas ascends and cools radiatively → lose buoyancy and bends the field line → reduce the magnetic pressure in the umbra side → triggers a new upflow

Consistency with Models

• Note: This is MY interpretation...

[Single flux tube model]	[Convection model]
e.g., Schlichenmaier et al. 1998	e.g., Scharmer et al. 2008
Can not understand UDs in the same framework	<i>Unified model</i> for UDs, penumbral grain, penumbral filament
I'm not sure how this model can	Positive correlation between
reproduce peripheral umbral dot	the field inclination and
and the relation with the field	apparent motion speed can be
inclination	understood
<i>The strong field "wall" at the leading edge</i> of migration UD can be understood	How can the convection model explain the strong field "wall" that is pushed by UD migration?

Future work

Umbral dot is a unique observational target for studying magneto-convection in situ !!

 Time evolution of UDs in magnetic and velocity field from seeing-free satellite observation

Also useful for subsurface diagnoses !

 Statistical analysis of distribution map (in other words, dark umbral core evolution) may give some hints to the subsurface structure and how it evolves