Observations and Modelings of the Solar Flux Emergence

Shin Toriumi (Univ. of Tokyo)

Supervisor: T. Yokoyama (U. Tokyo)

Hinode-7 (2013 Nov. 13)
1. Introduction
1. Introduction

- Numerical Simulation: Emergence from -20 Mm

Mag. field: \(\log \left(\frac{|B|}{B_0} \right) \)
Toriumi & Yokoyama (2012)
1. Introduction

- Importance of Flux Emergence

 - Transports the magnetic flux from the deep interior
 - Creates active regions
 - Sometimes causes eruptions such as flares and CMEs

Observational and Numerical studies
2. Emergence in the Deep Interior

- Importance of Flux Emergence
 - Transports the magnetic flux from the deep interior
 - Creates active regions
 - Sometimes causes eruptions such as flares and CMEs

Observational and Numerical studies
2. Emergence in the Deep Interior

- Numerical Simulations
 - Thin-flux-tube approximation (Spruit 1981)
 - B_{eq} at the bottom of the CZ: at least 10^4 G
 - Total flux of ARs: 10^{20}-10^{22} Mx
 - Cross-sectional size of the tube: $\sim1,000$ km
 - Pressure scale height: a few 10,000 km
 - Anelastic approximation (Gough 1969)
 - Equation of continuity is approximated by
 $$\nabla \cdot (\rho_0 \mathbf{V}) = 0$$

- Flux tube is “thin”
- Sound waves are filtered out
2. Emergence in the Deep Interior

* Numerical Simulations

 Thin-flux-tube approximation (Spruit 1981)

 - Field strength of 10^5 G is required for the tubes to emerge at sunspot latitudes

 - *Colioris force* is responsible for various asymmetries between the leading and following polarities

 Anelastic approximation (Gough 1969)

 - Emergence in the rotating spherical shell

 - *Retrograde* flow along the flux tube

 - Emergence in the *convective* interior

Figure 2. Snapshots of the 3D evolution resulting from the NT simulation. The images show the volume rendering of the absolute magnetic field strength B. [This figure is available as an mp4 animation in the electronic edition of the Journal.]
2. Emergence in the Deep Interior

++ Observational Studies
++ Probing by Local Helioseismology

Ilonidis et al. (2011)

- Time-distance helioseismology
- Detected seismic anomaly in the deep convection zone at ~-65 Mm
- Up to 2 days before the flux emergence attains its peak flux growth rate
- Rising velocity: 0.3-0.6 km s⁻¹
3. Birth of Active Regions

- Importance of Flux Emergence
 - Transports the magnetic flux from the deep interior
 - Creates active regions
 - Sometimes causes eruptions such as flares and CMEs

Observational and Numerical studies
3. Birth of Active Regions

- 5-day Observation of AR 11130: Small-scale Features
3. Birth of Active Regions

Resistive Emergence Process

Suggestion of the Model (Pariat et al. 2004)

- Photospheric fields have **serpentine** structure (Strous & Zwaan 1999)
- Local **flux cancellations** of these fields \rightarrow **Ellerman bombs**
- Later simulated by Isobe et al. (2007) and Archontis & Hood (2009)
3. Birth of Active Regions

- Resistive Emergence Process
 - Convective emergence (Cheung et al. 2010)
 - Cancellations coupled with convection remove mass from the surface layer
 - Key process for entire tube emergence

Cheung et al. (2010)
3. Birth of Active Regions

- Resistive Emergence Process
 - Spectroscopy (Matsumoto et al. 2008)
 - Observation of an Ellerman bomb
 - Upflow of 1-3 km s\(^{-1}\) in the chrom.
 - Downflow of 0.2 km s\(^{-1}\) in the photo.
 - Bi-directional jet due to reconnection

Matsumoto et al. (2010)
3. Birth of Active Regions

- Resistive Emergence Process
 - Future Observation → Hinode and Solar-C
 - Spectro-Polarimetry: SOT and SUVIT
 - Scan the emerging flux region at the photosphere and the chromosphere
 - To quantitatively investigate the contribution of each process to the entire flux tube emergence
1. Introduction

- Importance of Flux Emergence
 - Transports the magnetic flux from the deep interior
 - Creates active regions
 - Sometimes causes eruptions such as flares and CMEs

Observational and Numerical studies
4. Formation of a Flaring Active Region

- Flaring AR: NOAA 11158
 - Produced a series **strong flares** including X2.2-class event
 - **Highly sheared PIL** in the central δ-sunspots

Hinode/SOT: movie courtesy of T. Okamoto
4. Formation of a Flaring Active Region

- Previous Studies
 - Kusano et al. (2012)
 - Reconnection between the sheared coronal arcades
 - Sammis et al. (2000)
 - δ-sunpots produce many more large flares

![Graph showing relationship between spot group area and max. X-ray flux](image-url)
4. Formation of a Flaring Active Region

Previous Studies

- Kusano et al. (2012)
 - Sheared PIL, coronal arcade, and δ-sunspots
 - Important for production of intensive flares

- Sammis et al. (2000)
 - δ-sunspots produce many large flares

What creates such structures in an AR?

- Formation of AR from the flux emergence
- Target region: AR 11158
4. Formation of a Flaring Active Region

- Evolution of AR 11158
 - Composed of two emerging bipoles P1-N1 and P2-N2
 - Sheared PIL is created between N1 and P2, which forms δ-sunspots
4. Formation of a Flaring Active Region

Photospheric Evolution
1. P1-N1 / P2-N2 appear at the surface
4. Formation of a Flaring Active Region

Photospheric Evolution

1. P1-N1 / P2-N2 appear at the surface
2. P2 drifts along the southern edge of N1, forming a sheared PIL

Sheared PIL

δ-sunspots
4. Formation of a Flaring Active Region

Coronal Evolution

3. Coronal arcade connecting N1-P2 is then created above the PIL

4. A series of strong flares (including X and M events) occur at this PIL
4. Formation of a Flaring Active Region

- Formation of AR 11158
- Two possible scenarios for this AR

Case 1

Emergence of a single split tube

Case 2

Emergence of two independent tubes
4. Formation of a Flaring Active Region

- Formation of AR 11158
- 3D MHD simulation of magnetic flux tubes for Cases 1 and 2

Case 1

- Length: \(H_0 = 200 \text{ km} \)
- Time: \(\tau_0 = 25 \text{ s} \)
- Field strength: \(B_0 = 300 \text{ G} \)

Mimic the splitting by sinking the middle part
4. Formation of a Flaring Active Region

- Formation of AR 11158
- Results: Magnetogram

Case 1: single split tube

Case 2: two independent tubes
4. Formation of a Flaring Active Region

- Formation of AR 11158
- Results: Magnetogram

Case 1: single split tube

- \(\delta \)-sunspots
- Arrows: \(B_h \)
- Sheared PIL

\[t/\tau_0 = 150.0 \]
4. Formation of a Flaring Active Region

↑ Formation of AR 11158

↑ Results: Coronal fields and reconnection

1. P1-N1 and P2-N2 come closer to the middle of the region.
2. Reconnection occurs in a current sheet.
3. Arcade field (N1-P2) is created, while post-reconnection field (P1-N2) is ejected upward.

Case 1 \((t/\tau_0 = 120)\)
4. Formation of a Flaring Active Region

Formation of AR 11158

Results: Coronal fields and reconnection

1. **P1-N1** and **P2-N2** come closer to the middle of the region.
2. **Reconnection** occurs in a current sheet.
3. **Arcade field** (N1-P2) is created, while post-reconnection field (P1-N2) is ejected upward.

Case 1 \((t/\tau_0 = 120) \)
4. Formation of a Flaring Active Region

- Comparison of the Observation and Simulations
- Creation of the sheared PIL
4. Formation of a Flaring Active Region

- Comparison of the Observation and Simulations
 - Creation of the sheared PIL

(a) AR 11158
(b) Case 1
(c) Case 2

- In AR 11158, N1→P2 vector rotates and the length becomes shorter.
- Only Case 1 shows a similar trend. In Case 2, N1 and P2 simply fly by.
4. Formation of a Flaring Active Region

- Formation of AR 11158
- Conclusion: **Case 1** is more likely the case

Case 1
Emergence of a single split tube

Case 2
Emergence of two independent tubes
4. Formation of a Flaring Active Region

 Formation of AR 11158

 Conclusion: Case 1 is more likely the case

- Two emerging fields of AR 11158 shared a common root below the surface.
- Emergence of single tube produced
 - Sheared PIL and coronal arcade
 - δ-sunspots
 which is responsible for the flares

- Large-scale flux emergence is greatly responsible for the flaring activities.
5. Summary

- Flux Emergence from the Interior to the Atmosphere
 - Emergence in the Deep Interior
 - Simulations
 - Helioseismology
 - Birth of Active Regions
 - Small-scale features
 - Resistive emergence model
 → Hinode / Solar-C
 - Formation of a Flaring Active Region
 - Sheared PIL, coronal arcade, and δ-sunspots
 - AR 11158: single split tube rather than two tubes
 → Large-scale emergence is responsible for the flare activities (Toriumi et al., submitted)
Thank you for your attention!