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2. Emergence in the Deep Interior

7 Numerical Simulations
2  Thin-flux-tube appoximation (Spruit 1981)
v B, at the bottom of the CZ: at least 10* G
v' Total flux of ARs: 10%20-1022 Mx v’ Elux tube is “thin”
- Cross-sectional size of the tube: ~1,000 km

Pressure scale height: a few 10,000 km

72 Anelastic approximation (Gough 1969)

v' Equation of continuity is approximated by v" Sound waves are
filtered out
V+(p,V)=0



2. Emergence in the Deep Interior

Numerical Simulations
2 Thin-flux-tube appoximation (Spruit 1981)

v' Field strength of 10° G is required for the tubes to
emerge at sunspot latitudes

v" Colioris force is responsible for various
asymmetries between the leading and following
polarities

72 Anelastic approximation (Gough 1969)
v Emergence in the rotating spherical shell
v' Retrograde flow along the flux tube

v' Emergence in the convective interior

Fan (2008)



2. Emergence in the Deep Interior

71 Observational Studies
? Probing by Local Helioseismology

A v" llonidis et al. (2011)
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3. Birth of Active Regions

71 5-day Observation of AR 11130: Small-scale Features

SDO/HMI Magnetagram 2010—Dec—01 23:48 UT
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3. Birth of Active Regions

77 Resistive Emergence Process
# Suggestion of the Model (Pariat et al. 2004)
v Photospheric fields have serpentine structure (Strous & Zwaan 1999)

v Local flux cancellations of these fields - Ellerman bombs
v' Later simulated by Isobe et al. (2007) and Archontis & Hood (2009)
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3. Birth of Active Regions

77 Resistive Emergence Process
72 Convective emergence (Cheung et al. 2010)

v' Cancellations coupled with convection
remove mass from the surface layer

v Key process for entire tube emergence

Reconnection removes mass from field-line

Erosion of photospheric unsigned flux

Cheung et al. (2010)



3. Birth of Active Regions

77 Resistive Emergence Process
72 Spectroscopy (Matsumoto et al. 2008)
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v" Observation of an Ellerman bomb
40

« Upflow of 1-3 km s in the chrom.

« Downflow of 0.2 km st in the photo. ..

o &4 & L SHi
-100 ‘ g i ﬁ
o

v Bi-directional jet due to reconnection

/

-60
3
/ chromosphere 100

[LOS 'MDIMagnetogram ~ Continuum

p]’lOlOSphCl’C 840 860 880 900 920 840 860 880 900 920

—~———
o Matsumoto et al. (2010)




3. Birth of Active Regions

77 Resistive Emergence Process

7 Future Observation > Hinode and Solar-C

v' Spectro-Polarimetry : SOT and SUVIT

v' Scan the emerging flux region at the
photosphere and the chromosphere

v' To quantitatively investigate the contribution of
each process to the entire flux tube emergence
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1. Introduction

71 Importance of Flux Emergence

?2 Transports the magnetic flux from
the deep interior

A Creates active regions

72 Sometimes causes eruptions
such as flares and CMEs

Observational and Numerical studies



4. Formation of a Flaring Active Region

71 Flaring AR: NOAA 11158

v Produced a series strong flares including X2.2-class event
v' Highly sheared PIL in the central 6-sunspots

-
N

Hinode/SOT : movie courtesy of T. Okamoto



4. Formation of a Flaring Active Region

71 Previous Studies

? Kusanoetal. (2012) 72 Sammis et al. (2000)
71 Reconnection between the 71 O6-sunpots produce many
sheared coronal arcades more large flares

1x102 5

1x103

110 o

1x10°° 5

_;
X
fa
Q
(<]

Max. X-Ray Flux

1x107

1x108

1x107 2 2 1x10*

Spot Group Area




4. Formation of a Flaring Active Region

Previous Studies

Sheared PIL, coronal arcade, and 6-sunspots
v’ Important for production of intensive flares

What creates such structures in an AR ?
v Formation of AR from the flux emergence
v’ Target region : AR 11158

1x10™



4. Formation of a Flaring Active Region

71 Evolution of AR 11158

v' Composed of two emerging bipoles P1-N1 and P2-N2
v' Sheared PIL is created between N1 and P2, which forms 6-sunspots
SDO/HMI Magnetogram 15—Feb—2011 00:00:00 UT
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4. Formation of a Flaring Active Region

72 Photospheric Evolution
1. P1-N1/P2-N2 appear at the surface

N1




4. Formation of a Flaring Active Region

72 Photospheric Evolution
1. P1-N1/P2-N2 appear at the surface

2. P2 drifts along the southern edge of N1, forming a sheared PIL

Sheared PIL

&-sunspots




4. Formation of a Flaring Active Region

_ SDO/AIA 171A
2 Coronal Evolution 600
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4. Formation of a Flaring Active Region

7 Formation of AR 11158
?” Two possible scenarios for this AR

Case 1 Case 2
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4. Formation of a Flaring Active Region

7 Formation of AR 11158
A 3D MHD simulation of magnetic flux tubes for Cases 1 and 2

Case 1 Case 2
150
z/H,
NN N\ N 120
-20 y/H,
-120
-120 x/H0 120 -120 x/HO 120

Mimic the splitting by
sinking the middle part * Length: A, = 200 km

* Time: ;=255

* Field strength: B, =300 G




4. Formation of a Flaring Active Region

7 Formation of AR 11158
? Results: Magnetogram

Case 1 :single split tube

¥/ Ha

Case 2 : two independent tubes
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4. Formation of a Flaring Active Region

71 Formation of AR 11158

2 Results: Coronal fields and
reconnection

1.

P1-N1and P2-N2 come closer
to the middle of the region.

Reconnection occursin a
current sheet.
Arcade field (N1-P2) is created,

while post-reconnection field
(P1-N2) is ejected upward.

e
A\

N2

P2 N1 P1

Case 1 (t/r,=120)




4. Formation of a Flaring Active Region

71 Formation of AR 11158
72 Results: Coronal fields and

reconnection

1.

Case 1 (t/r,=120)

P1-N1 and P2-N2 come closer
to the middle of the region.

Reconnection occursin a
current sheet.
Arcade field (N1-P2) is created,

while post-reconnection field«"
(P1-N2) is ejected upware

N2




4. Formation of a Flaring Active Region

71 Comparison of the Observation and Simulations
? Creation of the sheared PIL




4. Formation of a Flaring Active Region

71 Comparison of the Observation and Simulations
? Creation of the sheared PIL

(a) AR 11159§ (b) Case 1 (c) Case 2
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7 In AR 11158, N1->P2 vector rotates and the length becomes shorter.
7 Only Case 1 shows a similar trend. In Case 2, N1 and P2 simply fly by.



4. Formation of a Flaring Active Region

71 Formation of AR 11158

?2 Conclusion: Case 1 is more likely the case

Case 1 Case 2
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4. Formation of a Flaring Active Region

71 Formation of AR 11158

?2 Conclusion: Case 1 is more likely the case

Case 1

v Two emerging fields of AR 11158

shared a common root below the
surface.

v' Emergence of single tube produced

« Sheared PIL and coronal arcade

« &-sunspots
which is responsible for the flares

NN ~> v Large-scale flux emergence is
< > < >

L L greatly responsible for the flaring
activities.

Emergence of a single split tube




5. Summary

71 Flux Emergence from the Interior to the
Atmosphere

72 Emergence in the Deep Interior
v' Simulations
v" Helioseismology

? Birth of Active Regions
v Small-scale features

Depth / Height

v' Resistive emergence model
- Hinode / Solar-C TIime

# Formation of a Flaring Active Region
v' Sheared PIL, coronal arcade, and &-sunspots
v AR 11158: single split tube rather than two tubes

— Large-scale emergence is responsible for the flare
activities (Toriumi et al., submitted)
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