Wave Heating in the Solar Corona

Ineke De Moortel

School of Mathematics & Statistics University of St Andrews

Overview

- Some thoughts on the generation of [Alfvén(ic)] waves in the solar atmosphere
- Some recent observations of [Alfvén(ic)] waves in the chromosphere and corona
- Line-of-Sight effects ("Dark Energy")
- Mode coupling to explain the observed damping of Doppler shift oscillations
- Observational signatures of wave heating

Generation of Alfvén(ic) Waves

'Wave' flux at top of convection zone ~ 10⁷ erg cm⁻² s⁻¹ (*Narain & Ulmschneider* 1996)

- Reflection of Chromosphere and Transition Region
 - Only some fraction of energy will be transmitted into the corona
- Mode coupling (β =1)
 - Probably not a straightforward or one-to-one correspondence between footpoint/ surface motions and observed coronal 'motions' (waves).

How do these Alfvén(ic)/kink waves get there?

- Flares, reconnection events and other disturbances can generate Alfvén waves.
- With almost any kind of footpoint motion you will generate Alfvén waves.
- Uniform: transverse motion \rightarrow Shear Alfvén waves
- − Non-uniform: transverse motion \rightarrow kink wave \rightarrow mode coupling \rightarrow (azimuthal) Alfvén wave
- Non-uniform: vortex motion → Torsional Alfvén wave

• All of the above apply largely to plane-parallel and static atmosphere.

- Is there such a thing as a 'stable' wave guide?
- What happens if the 'flux tubes' are continuously evolving?

Vortex Driving Motions

Photospheric G-band movie

- Simulations show that convection naturally leads to vortex motions of magnetic flux elements (Vogler et al. 2005; Carlsson et al. 2010; Shelyag et al. 2010)
- Bonet et al (2008): SST observations of magnetic bright points show vortex motions (lifetimes ~ 5 mins)

Torsional Alfvén waves generated all over photosphere?

Solar Physics and Space Plasma Research Centre (SP²RC)

12 Jan 2010

Viktor Fedun and Robert Erdelyi v.fedun, robertus@sheffield.ac.uk http://swat.group.shef.ac.uk/simulations.html

MHD Waves in 3D Flux Tube

- Driver period: P=120 s
- Driver amplitude: A=200 m/s
- Driver distance: R=100 km
- Footpoint flux tube radius: R=100 km
- Footpoint magnetic field: B=1000 G
- Zoom in of the full domain ([Dx, Dy, Dz] = [2 Mm, 2 Mm, 1.8 Mm]) focusing on the region Dx, Dy = 0.8 – 1.2 Mm, Dz=0 – 0.9Mm
- Gridpoints [Nx, Ny, Nz] = [100, 100, 196]

Chromospheric Ca II movie

Alfvén(ic) Waves in the Chromosphere

- Chromospheric bright point oscillations (SST)
- Periodic spectral line broadening; no intensity oscillations
 - Interpreted as torsional Alfvén waves
- Chromospheric energy flux ~ I5,000 W m⁻²
 - 1.6% of surface covered in Bright Points
 - Global average ~ 240 W m^{-2}
 - Transmission coefficient ~ 42%
 - Coronal energy flux ~ $100 \text{ W} \text{ m}^{-2}$

Jess et al (2009)

Sausage Oscillations in Photospheric Pores

Morton et al (2011)

- Oscillations in Photospheric Magnetic Pores (ROSA 4170A line)
- Use Empirical Mode Decomposition to separate out timescales.
- Periods: 30 450 seconds
- Sausage modes: oscillations in pore size and intensity are 180 degrees out of phase.
- Wave energy: E = 10⁸ ergs cm⁻² s⁻¹ → ~10% transmission coeff needed?

Alfvén(ic) Waves in the Chromosphere

- "Swaying" spicules everywhere (Hinode/SOT)
 - Transverse motions ~ 500-1000km
 - Periods ~ few minutes
 - Chromospheric energy flux ~ 4-7 kW m⁻²
 - Coronal energy flux ~ I20 W m⁻² (transmission coefficient ~ 3%)
 - Sufficient to heat the Quiet Sun corona and/or drive the solar wind $(\sim 100 \text{ W m}^{-2})$
 - Additional torsional motions reported by De Pontieu et al (2012) \rightarrow double energy budget?

De Pontieu et al (2007, 2012)

Compressive Waves in the Chromosphere

- Concurrent observations of (on disk) compressible and incompressible wave modes (ROSA).
 - Transverse motions fast kink wave
 - Periodic changes in intensity & cross section fast MHD sausage mode
 - Incompressible energy ~ 4300 \pm 2700 W m^-2
 - Compressible energy ~ $I I 700 \pm 3800 \text{ W m}^{-2}$
 - Assume 4-5% connected to corona
 - Incompressible energy ~ 170 ± 110 W m⁻²
 - Compressible energy ~ $460 \pm 150 \text{ W m}^{-2}$

Alfvén Waves in the Coronal Holes

Alfven waves in coronal holes (Hinode/EIS)

- Line widths from (double) Gaussian fits to EIS lines
- At larger heights, v_{nt} < undamped waves \rightarrow wave damping
- Wave energy at base of coronal hole: $E = 6.7 \pm 0.7 \times 10^5$ ergs cm⁻² s⁻¹
- Waves lose ~85% of energy by 1.44 $\rm R_{o}$
- Damping length $L_D = 0.18 \pm 0.04 R_o$ and damping time = 68 ± 15 seconds

Hahn & Savin 2013

Alfvén(ic) Waves in the Corona

- > Ubiquitous quasi-periodic fluctuations in velocity but no fluctuations in intensity
- Interpretation as propagating Alfvén waves based on high phase speeds (~ I Mm/s), fieldaligned, and very small intensity fluctuations (incompressible)
- Disparity between outward and inward wave power (even along closed loops) suggests significant amplitude decay *in situ*
- Energy insufficient to account for heating?
 - $F_W = 10-100 \text{ erg cm}^{-2}\text{s}^{-1} \text{ vs } 3 \times 10^5 \text{ erg cm}^{-2}\text{s}^{-1} \text{ needed for Quiet Sun}$

Tomczyk et al 2007; Tomczyk & McIntosh 2009

Alfvén(ic) Waves in the Corona

- > Alfvénic motions everywhere (SDO/AIA)
 - Amplitudes ~ 5-20 km/s
 - Periods ~ 100 500 sec (lifetimes ~ 50-500 sec)
 - Energy flux Quiet Sun & Coronal Holes ~ 100 200 W m⁻²
 - Active Region Loops ~ 100 W m⁻² (2000 W m⁻² needed)

Observing "Dark" Energy

- > Apparent discrepancy between CoMP velocities (~0.5 km/s) and Hinode & SDO (~20 km/s)
- Monte Carlo model of Alfvenic waves based on threads ("elementary oscillating structures")
- Vary number of threads and input wave amplitude determine v_{RMS} and line broadening
- "Real" CoMP wave amplitudes estimated as 40-60 km/s
- Most of the CoMP non-thermal line broadening < LOS superposition of low frequency waves

McIntosh & De Pontieu 2012

Modelling "Dark" Energy

Lower boundary of 3D box

- Randomly directed driver at bottom boundary; loops have different densities and driver periods.
- LOS Integrated Doppler velocities much smaller than actual perturbations in domain
- Compare 3D kinetic energy with kinetic energy derived from LOS velocities
- Observed LOS (Doppler) energy only 3 10% of total energy in 3D domain (kinetic + magnetic)

De Moortel & Pascoe 2012

Mode Coupling

user: dpascoe Wed Dec 323:25:29 2008

Alfvén wave

mode

Z=0

Z=200

Pascoe et al 2010 - 2013; Terradas et al 2010; Verth et al 2010; Soler et al 2011a,b,c; Hood et al 2013; Goossens et al 2013

Wave Heating

- Historically first suggested as heating mechanism (Biermann 1946, 1948; Schwarzchild 1948)
- (Some) Alfven waves not reflected at chromosphere (Hollweg 1978, 1984, 1985) and hence could heat corona (Wentzel 1974, 1976)
 - Resonant absorption (Ionson 1978; Goossens 2011)
 - Phase mixing (Heyvaerts & Priest 1983)
- Vast literature...

> In the context of the recent observations:

- Sufficient flux \neq (right) heating
- Damping ≠ Dissipation (e.g. Lee & Roberts 1986)
- Timing? (dissipation time >> damping time?)

So what does wave heating look like?

- Heating leads to chromospheric evaporation: •
 - Modification of the density profile ullet
 - Drifting of the heating layer? ullet
- Ofman et al (1998): simulations of resonant absorption
 - Scaling laws for quasi-static heating & volumetric heating rate

$$Q \approx \frac{3}{7} \kappa_0 \frac{T^{7/2}}{L^2} \approx \frac{3}{4} \rho_0^2 \Lambda(T)$$

Multi-structured heating and density ۲

> Can wave heating look implusive?

- **Timescales**?
- Difference with other heating mechanism? •

Ofman et al 1998

 \geq <u>1.5D model</u> to try and distinguish between waves and nanoflares

Antolin et al 2008

OBSERVATIONAL SIGNATURES FOR CORONAL HEATING MECHANISMS					
Heating Model (1)	Flow Pattern (2)	Mean Velocities $\langle v_p \rangle$ (km s ⁻¹) (3)	Max Velocities $\langle v_p \rangle$ (km s ⁻¹) (4)	Intensity Flux Pattem (5)	Mean Power-Law Index (6)
Alfvén wave Nanoflare footpoint Nanoflare uniform	Nonuniform, alternating Uniform, simultaneous Uniform, simultaneous	$\sim 50 \ \sim 15 \ \sim 5$	>200 >200 <40	Bursty everywhere Bursty close to TR Flat everywhere	$\left< \delta \right> < -2 \ -1.5 > \left< \delta \right> > -2 \ \left< \delta \right> > -2 \ \left< \delta \right> \sim -1$

Moriyasu et al 2004; Taroyan et al 2007; Taroyan & Erdelyi 2009

- Reduced MHD
- Small scale footpoint motions (< 100 km) incompressible
- Assume AR flux tube maintains identity
- Strong reflection of chromosphere and TR → complex pattern of counter-propagating waves → Alfvénic turbulence
- Coronal heating pattern similar to nanoflare storm!

Z = 0 - 2 Mm

Z = 2 - 50 Mm

Kudoh & Shibata 1999; Mendoza-Briceno 2002,2005; Moriyasu et al 2004; Antolin & Shibata 2010; Matsumoto & Shibata 2010

- Thermodynamics not included so no predictions of emissions
- Predictions of heating rate in terms of footpoint motions and loop length:

$$Q_{\rm cor} \approx 2.97 \times 10^{-3} \left(0.45 + \frac{33}{\tau_0} \right) \left(\frac{\omega_0}{0.04 \, {\rm s}^{-1}} \right)^{1.65} \\ \times \left(\frac{L_{\rm cor}}{50 \, {\rm Mm}} \right)^{-0.92} \, {\rm erg} \, {\rm cm}^{-3} \, {\rm s}^{-1},$$

• Heating rate dependence of magnetic field strength

$$Q_{\rm chrom} \approx 6.49 \times 10^{-1} \left(\frac{B_{\rm cor}}{50 \,{\rm G}}\right)^{0.47} \,{\rm erg}\,{\rm cm}^{-3}\,{\rm s}^{-1}$$

 $Q_{\rm cor} \approx 2.88 \times 10^{-3} \left(\frac{B_{\rm cor}}{50 \,{\rm G}}\right)^{0.55} \,{\rm erg}\,{\rm cm}^{-3}\,{\rm s}^{-1}$

> Coronal heating rate increases for stronger |B| & shorter loops

Most heating in lower atmosphere (< 10% energy transmitted)
 ~ De Pontieu et al (2009)

CHROMOSPHERIC HEATING RATE (erg/s/cm³) (d) 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 100 10 CORONAL FIELD STRENGTH (G) 10 CORONAL HEATING RATE (10⁻³ erg/s/cm³) (c) 0 10 100 CORONAL FIELD STRENGTH (G)

Van Ballegooijen et al 2011

Observational Hint of (Alfvénic) Turbulence?

- Doppler shift oscillations in large, diffuse, trans-equatorial coronal loop (CoMP)
- STEREO/EUVI-B: very isolated systems and loops almost perfectly N-S aligned

De Moortel et al 2013

Observational Hint of (Alfvénic) Turbulence?

- Time-Distance plot: typical herringbone pattern of counter-propagating waves (propagation speed ~ 500 km/s)
- FFT power along the loop:V-Shaped pattern \rightarrow significant high-frequency power at the apex
- Randomly shuffled time series: null result

Observational Hint of (Alfvénic) Turbulence?

- Normalised high-frequency power is indeed higher at loop apex.
- From mode coupling we would expect $L_d \sim P$ so higher frequencies should damp quicker...

Conclusions/Future Directions

- Observations: waves are present beyond doubt in a wide range of structures in all layers of the solar atmosphere.
- Wave heating has come full circle and is now back at the forefront of the coronal heating debate.
 - Vast amount of literature!
- Theoretical/numerical modelling needs to catch up:
 - Issues with mode identification and complexity of models.
 - Wave models need to include highly dynamic 'wave guides'.
 - More work needed to identify observational signatures.
 - Isolated/individual MHD wave modes are unlikely

Can heating be "delivered" in the right locations and on the right timescales by waves?

Parnell & De Moortel 2012; De Moortel & Nakariakov 2012; Komm et al 2013