

Evolution of electric currents and their connection with the 2011 February 15 X-class flare ribbons

01.48 UT

Miho Janvier

G. Aulanier, V. Bommier, B. Schmieder, P. Démoulin LESIA – Observatoire de Paris

Eruptive flares characteristics: flare loops, flare ribbons and flux rope

Flare loops and flare ribbons

Flux rope

[Schmieder et al. 1995, Asai et al. 2003, Fletcher et al. 2011] [Chen et al. 1997, Zhang et al. 2011, Patsourakos 2013]

•<u>Flare loops</u>: regions of high density and temperature (<u>X/UV rays</u>)

•<u>Ribbons</u>: collisional region between descending particles and higher density chromosphere

•<u>Flux rope</u>: twisted magnetic structure that can support a prominence

Carmichael (1964), Sturrock (1966), Hirayama (1974) Kopp & Pneumann (1976) Forbes & Malherbe (1986) Shibata et al (1995)

3D standard model for eruptive flares: MHD simulation

OHM code: 3D, non uniform mesh, $\beta = g = 0$, $\eta_{coronal} = cst$

Free expansion of a torus-unstable flux rope

 \rightarrow 3D (slipping) reconnection Janvier et al. (2013)

3D standard model for eruptive flares: MHD simulation

OHM code: 3D, non uniform mesh, $\beta = g = 0$, $\eta_{coronal} = cst$ Free expansion of a torus-unstable flux rope \rightarrow 3D (slipping) reconnection Janvier et al. (2013)

Predictions for the flare ribbons from this 3D standard model

Qualitative evolution of the flare ribbons via the evolution of the QSLs/current ribbons •Ribbon separation

•<u>J-shape structure</u>

Does the "real" Sun confirm these predictions?

Qualitative evolution of the flare ribbons via the evolution of the QSLs/current ribbons •Ribbon separation

Dudìk et al. *(submitted)*

→ Photospheric currents: **measurements** vs idealized « zero- β » boundary currents?

→ What would their evolution tell us about the energy release?
Should current decrease as the magnetic field goes back toward a potential state?

Case study: AR 11158 and the Feb. 15, 2011 X2 flare

Case study: AR 11158 and the Feb. 15, 2011 X2 flare

M. Janvier – HINODE 7 – 14/11/2013

Unnofit inversion method: Bommier et al. (2007) see also Bommier's poster (S1P12) \rightarrow B(x,y,z) is calculated \rightarrow Maps of the current density are available

signal with |J|>0.02 A.m⁻²

Evolution of the current density in the defined regions

Unnofit inversion method: Bommier et al. (2007) see also Bommier's poster (S1P12) \rightarrow B(x,y,z) is calculated \rightarrow Maps of the current density are available

signal with |J|>0.02 A.m⁻²

H- : Signal more consistent for the hook, S- : broadening of the current ribbon S+: Elongation of the current ribbon, H+: Signal increase in the hook

Evolution of the current density in the defined regions

Integration of the current densities in the designed boxes: $I = \iint J_z dx dy$ \rightarrow Separation between direct current ($\mathbf{B}_{z}\mathbf{J}_{z}$ >0) and return current ($\mathbf{B}_{7}\mathbf{J}_{7}<0$)

(x,y)

Evolution of the current density in the defined regions

→ Current density *J* should be decreasing...

OTHER PHYSICAL EFFECT THAT IS DISMISSED IN THIS REASONING? (or false signal?)

M. Janvier – HINODE 7 – 14/11/2013

What was dismissed: the CURRENT SHEETS!

- 1. Photospheric current = footprints of current structure in the corona
- 2. Flux rope eruption: magnetic field forced to evolve -> shear and converging flows
- 3. \rightarrow Current density increase \rightarrow collapse of the coronal J layer \rightarrow reconnection ++

Flare ribbons evolution with AIA data:

 \rightarrow Superposition of J_z-maps from HMI data

•Broadening/elongation of the « straight » parts

- Consistent hook structures after the peak
- \rightarrow All features well reproduced in J_z maps! (obs/simu)

- 1. First comparisons of flare ribbons and current density ribbons evolutions with high time cadence from AIA and HMI. They match the predictions of the 3D standard model
- 2. Photospheric current **increases** during the impulsive phase:

Due to collapse of the coronal current layer and development of currents all along QSLs

- 3. Hook evolution :
- ➔ hook broadens as FR is further built up during the eruption

Janvier et al (in prep.)