^AUCL

The topology of supersonic up-flows in a filament eruption

High-speed Flows in a Bright Thread

David Williams¹ • Deb Baker¹ • Lucie Green^{1,2} • David Long¹ Lidia van Driel-Gesztelyi^{1,3,4} • Iain Hannah^{2,5}

¹University College London • ²Royal Society University Research Fellow ³Observatoire de Paris, Meudon • ⁴Konkoly Observatory ⁵University of Glasgow

- Observed by AIA
 - morphology

- Observed by AIA
 - morphology
- Observed by EIS
 - velocity
 - other diagnostics

- Observed by AIA
 - morphology
- Observed by EIS
 - velocity
 - other diagnostics
- Probing dynamics
 - where eruption crosses EIS slit

• Rare to be captured by satellite spectrometers

- Rare to be captured by satellite spectrometers
 - Small instantaneous field-of-view ($\leq 2" \times 512"$)

- Rare to be captured by satellite spectrometers
 - Small instantaneous field-of-view ($\leq 2" \times 512"$)
 - Difficult to predict time and location

- Rare to be captured by satellite spectrometers
 - Small instantaneous field-of-view ($\leq 2" \times 512"$)
 - Difficult to predict time and location
 - Spacecraft observing schedules of order days

- Rare to be captured by satellite spectrometers
 - Small instantaneous field-of-view ($\leq 2" \times 512"$)
 - Difficult to predict time and location
 - Spacecraft observing schedules of order days
 - Eruption pre-cursors on much shorter timescales

SDO AIA_2 193 31-Aug-2012 19:47:07.840 UT

SDO AIA_2 193 31-Aug-2012 19:47:07.840 UT

Eruption profile near Sun

SDO AIA_2 193 31-Aug-2012 19:46:07.840 UT

Eruption profile near Sun

• Track radial motion of filament

- Track radial motion of filament
- Filament shows EUV absorption and emission

- Track radial motion of filament
- Filament shows EUV absorption and emission
 - Sum absolute differences from background

- Track radial motion of filament
- Filament shows EUV absorption and emission
 - Sum absolute differences from background
 - Integrate over 15° azimuth

- Track radial motion of filament
- Filament shows EUV absorption and emission
 - Sum absolute differences from background
 - Integrate over 15° azimuth

- Track radial motion of filament
- Filament shows EUV absorption and emission
 - Sum absolute differences from background
 - Integrate over 15° azimuth
 - Gradient-based tracking of front
 - Shown as white circles

Spectra along filament: Fe XII

• 195.12 Å

- Rest component from foreground/background is shown in orange.
- No other strong lines in the spectrum where it shifts to: clean identification
 - $\lambda 194.9$ is a red herring
- Supersonic

Spectra along filament: He II

- 256.32 Å
 - Only Doppler-shifted component is fitted here
 - Clean area of spectrum
 - In all cases, pattern persists for > 10 min where thread crosses slit

Multiple lines show blue-shift

Selecting spectrum from increasingly higher points along slit as the movie plays

Multiple lines show blue-shift

Selecting spectrum from increasingly higher points along slit as the movie plays

Multiple lines show blue-shift

Selecting spectrum from increasingly higher points along slit as the movie plays

SDO AIA_2 193 31-Aug-2012 19:50:07.840 UT

SDO AIA_2 193 31-Aug-2012 19:50:07.840 UT

SDO AIA_2 193 31-Aug-2012 19:50:07.840 UT

Thread outline

Thread outline

19:30:07 UT 19:30:11 UT 19:30:01 UT

Flare ribbons & topology

Flare ribbons & topology

Flare ribbons & topology

• Thread is anchored at flare ribbons

Flare ribbons & topology

- Thread is anchored at flare ribbons
- Expect a separatrix or quasiseparatrix layer (QSL) around erupting flux rope
- Flare ribbons represent intersection of QSL with photosphere

Flare ribbons & topology

- Thread is anchored at flare ribbons
- Expect a separatrix or quasiseparatrix layer (QSL) around erupting flux rope
- Flare ribbons represent intersection of QSL with photosphere
- Prime topological feature where reconnection can happen

Flare ribbons & topology

- Thread is anchored at flare ribbons
- Expect a separatrix or quasiseparatrix layer (QSL) around erupting flux rope
- Flare ribbons represent intersection of QSL with photosphere
- Prime topological feature where reconnection can happen
- Anchoring of bright thread in/ surrounded by flare ribbons is hint that thread may be driven by reconnection

19:30:07 UT 19:30:11 UT 19:30:01 UT

Thread flows & temperature

Thread flows & temperature

 One thread lights up and contains rapidly accelerated plasma

Thread flows & temperature

- One thread lights up and contains rapidly accelerated plasma
- Does it heat up?
 - Doppler shifts indicate flows are supersonic unless T \ge 8 MK.

But seen in "warm" lines only

Doppler motions in warm (T \leq 2 MK) lines, but no hotter.

But seen in "warm" lines only

Doppler motions in warm (T \leq 2 MK) lines, but no hotter.

• Spectral & imaging measurements of a fast filament eruption

- Spectral & imaging measurements of a fast filament eruption
- Combination reveals supersonic flows induced along the filament during rise

- Spectral & imaging measurements of a fast filament eruption
- Combination reveals supersonic flows induced along the filament during rise
- Accelerated material only reaches warm (2 MK) temperatures

- Spectral & imaging measurements of a fast filament eruption
- Combination reveals supersonic flows induced along the filament during rise
- Accelerated material only reaches warm (2 MK) temperatures
- Structure is rooted in/near flare ribbons
 - quasi-separatrix layer

- Spectral & imaging measurements of a fast filament eruption
- Combination reveals supersonic flows induced along the filament during rise
- Accelerated material only reaches warm (2 MK) temperatures
- Structure is rooted in/near flare ribbons
 - quasi-separatrix layer
- Plasma may be accelerated by local reconnection

- Spectral & imaging measurements of a fast filament eruption
- Combination reveals supersonic flows induced along the filament during rise
- Accelerated material only reaches warm (2 MK) temperatures
- Structure is rooted in/near flare ribbons
 - quasi-separatrix layer
- Plasma may be accelerated by local reconnection
- The explanation for these up-flows has to fit into our picture of filament eruptions