

Active Region Upflow Plasma: Does it Reach the near-Earth Environment?

J. L. Culhane¹, D.H. Brooks², L. van Driel-Gesztelyi^{1,3,4}, P. Démoulin³, D. Baker¹, M. L. DeRosa⁵, C. H. Mandrini^{6,7}, L. Zhao⁸, T.H. Zurbuchen⁸

¹University College London, Mullard Space Science Laboratory, Dorking, UK
 ² Naval Research Laboratory, Washington DC, USA
 ³Observatoire de Paris, LESIA, Meudon, France
 ⁴Konkoly Observatory, Hungarian Academy of Sciences, Budapest, Hungary
 ⁵Lockheed Martin Solar and Astrophysics Lab oratory, Palo Alto, CA, USA
 ⁶Instituto de Astronomia y Fisica del Espacio (IAFE), CONICET-UBA, Buenos Aires, Argentina
 ⁷Facultad de Ciencias Exactas y Naturales (FCEN), UBA, Buenos Aires, Argentina
 ⁸Dept. of Atmospheric, Oceanic and Earth Sciences, Univ. of Michigan, Ann Arbor, MI, USA,

[•]UCL

Summary

- Upflows from AR 10978, passed disc centre 10 15 Dec. 2007, studied by Hinode/EIS
 - plasma parameters (T_e, n_e, v, FIP-bias) measured as f(t)
- Upflow inclinations to the line-of-sight (LoS) estimated by Démoulin et al (2013) from the systematic changes in the upflow regions with distance from disc centre
 linear force-free field (LFFF) extrapolation for local AR field gave consistent upflow results
- NSO/GONG PFSS model shows that the inward Heliospheric Current Sheet (HCS) projection bisects AR 10978 and essentially coincides with its magnetic inversion line
- Global PFSS model shows AR 10978 completely covered by helmet streamer closed field
 - not clear how any upflowing plasma could reach heliosphere and contribute to slow solar wind
- ACE in-situ plasma data back-mapped to 2.5 R_o show that increases in O⁺⁷/O⁺⁶, C⁺⁶/C⁺⁵ and Fe/O (FIP bias proxy) are present from just past the HCS crossing to the West of the AR
 this looks very like AR-originating material
- Poster (Baker, Mandrini et al.) presented at this meeting suggests a mechanism for upflow material from AR 10978 to reach the heliosphere and be detected by ACE

AR 10978 and Associated Upflows

- From 10 15 Dec. 2007, AR 10978 passed Central Meridian (CM)
 - AR 10978 and the two principal associated upflow regions at its boundaries are shown below

- Upflows persistent during the 5 day interval though with greater fluctuation for the Western upflow due to emerging flux
 - XRT images are with Ti/Poly filters; EIS velocity maps from Fe XII/195.12 Å line profiles
 - apparent upflow velocity reversal from West to East due to flows' changing inclination to line-of-sight

Upflowing Plasma Properties

- Plasma parameters measured for East and West upflows and also average values included
 temp. (T_e), density (n_e), FIP-bias (f_{FIP}), velocity (v)
- n_e is estimated from Fe XIII line intensity ratio (I_{202.0 Å} /I_{203.8 Å}), v from line profiles
- T_e and FIP-bias are obtained from a Differential Emission Measure (DEM) analysis based on a set of 9 emission line (Fe VIII – XVI) intensities
 - method as in Brooks & Warren, Ap.J. 2011
- FIP-bias values 3.0 ≤ f_{FIP} ≤ 4.0 are characteristic of slow solar wind
- East upflow has higher FIP-bias than that from the West where ongoing flux emergence brings lower FIP-bias plasma into the coronal upflow

Upflows and Local Magnetic Field

• Study of upflow evolution with solar rotation (Demoulin et al., 2013) shows flow inclinations to LoS as $\delta_{East} \sim -50^{\circ}$ and $\delta_{West} \sim +20^{\circ}$

- Upflows observed in Si VII, Fe XII and Fe XV emission lines as spatially coherent thin fan-like structures
- Velocities and temporal evolution comparable for all three lines
- Flows show short-term variability but with a strong stationary component indicating a longlived (days/weeks) driving mechanism

Linear Force Free Field (LFFF) Extrapolation for AR 10978

- Topological analysis in the linear force-free field extrapolation (Demoulin et al., 2013) allows identification of Quasi-Separatrix Layers (QSLs: black lines))
 - red field lines start from East of the eastern QSL
 - Blue """"West""western"
- Upflows originate from these QSL sites
- Upflows from reconnection at QSLs between dense AR loops and long low-density loops
- Reconnection at QSLs results from AR growth and dispersion

- LFFF magnetic field configurations are valid close to the AR
 - computed field lines at AR borders have similar inclinations to those shown by direct modelling of the EIS upflows
 - they do not imply that the upflowing plasma leaves the Sun

AR 10978 related to Global Magnetic Field Configuration

 Carrington (CR 2064) display of a Stereo-B EUVI image shows AR and two nearby opposite polarity CHs
 CR 2064, 1.0 Rsun

- NSO/GONG PFSS model: open field reaches the source surface at 2.5 $\rm R_{\odot}$
 - inward projection of HCS bisects AR and separates East and West upflow regions
 - red/green areas show –ve/+ve polarity of open B-field regions
 - grey area shows mainly closed B-field regions and LoS magnetogram features for AR 10978

UCL

Global Solar Magnetic Field Configuration

- PFSS model for 12-Dec-07 shows large-scale topological structures and AR 10978
 - helmet streamer separatrix surface in semi-transparent yellow (a)
 - AR shown without helmet surface (b)
 - AR in closed–field region fully covered by streamer
 - streamer is bordered by the two adjacent CHs E and W of the AR
 - continuous blue line (a) shows the HCS

- Right-hand panel (b) has the helmet surface removed for greater clarity
 - LoS magnetic field structures of AR 10978 are shown
 - spine field lines (light-blue) do not enter the open field domain but remain closed below the streamer
 - thus long low density loops carrying the upflowing plasma are fully contained below the streamer
 - not obvious how plasma with AR composition could gain access to the Heliosphere

[±]UCL

ACE in-situ Observations Related to AR 10978 Passage

ACE data shown relative to a) ST-B EUVI 195 Å synoptic map for CR 2064

Data include:

- b) v_p c) He/p, d) O⁺⁷/O⁺⁶ and C⁺⁶/C⁺⁵, e) Fe/O, f) B_{radial}
- red line indicates change in B_{radial} polarity seen at ACE which shows HCS crossing
- Increases in O⁺⁷/O⁺⁶, C⁺⁶/C⁺⁵ and Fe/O (FIP bias)
 are present from just past the HCS crossing
 to the West of the AR
 - active region material in a slow solar wind flow
 - reduction in He/p indicates streamer tip contribution

Fast solar wind parameters are evident before and after the HCS transition (shown in yellow)

Fast wind flow originates from the two adjacent CHs that are E and W of AR 10978

Possible Mechanism for Plasma Escape from AR 10978

- Mandrini et al., (2013: to be submitted) describe a detailed analysis of the AR 10978 magnetic topology which locates four high altitude magnetic null points near the AR
 - one of these (N1) has associated open field lines
 - see poster by Baker, Mandrini et al presented at this meeting
- AR loops reconnect with large scale network fields (black) at the Eastern QSL
 - this high to low density reconnection drives the observed upflows
- The large scale loops reconnect with the open fields (pink) at N1 that are associated with the northern CH

• Open field lines bend towards the ecliptic and so can deliver the upflowing plasma from *East* of the AR to the Sun – ACE line *before* the HCS passage i.e. from the *West*

Conclusions

- flow geometry (Demoulin et al.) agreed with description based on LFF magnetic field extrapolation
- upflows found to originate in QSLs that were identified in the LFF analysis
- PFSS models show that the HCS bisects the AR approximately above its inversion line but also demonstrate that the AR is completely covered by a helmet streamer
 - no direct open field connections from the AR to the Heliosphere
- ACE in-situ plasma data were displayed relative to a Carrington synoptic map (CR 2064) for the interval 30-NOV-2007 to 27-DEC-07 which includes the disc transit of AR 10978
- By relating these data to the polarity change in B_r it is apparent that the speed and composition assume slow wind characteristics just to the West of the AR
 - supported by backmapping of the ACE data wrt the HCS crossing and B_r polarity change
 - given streamer coverage of the AR on both sides of the HCS, not clear how AR plasma escapes
- Mandrini et al. see poster by Baker et al., show how upflow material from *East* of the AR can reach ACE from *West* of the AR following at least two magnetic field reconnections

