Rapid events in the carbon-14 content of tree-rings

Fusa Miyake¹, Kimiaki Masuda¹, Toshio Nakamura², Fuyuki Tokanai³, Kazuhiro Kato³, Katsuhiko Kimura⁴, and Takumi Mitsutani⁵

¹ Solar-Terrestrial Environment Laboratory, Nagoya University

² Center for Chronological Research, Nagoya University

³ Faculty of Science, Yamagata University

⁴ Faculty of Symbiotic Systems Science, Fukushima University

⁵ National Institutes for Cultural Heritage, Nara National Research Institute for Cultural

Properties

HINODE-7, November 13, 2013

The stump of Tree-A

Past CR intensity...¹⁴C measurement

Relation between ¹⁴C & CR

Cosmic rays produce ¹⁴C (Neutron capture reaction)

 ^{14}C is oxidized to form $^{14}CO_2$ and taken by trees during the carbon cycle

¹⁴C content in tree rings is retained and shows a record of the past CR intensity

Cosmic ray events

Cosmic high energy phenomenon

- (i.e. large solar flare or galactic γ-ray event)
- \rightarrow Cosmic ray intensity rapidly increases
- \rightarrow It is possible tree-rings record such an event

However such events have not been found before

There are a lot of periods of time where there are no yearly ¹⁴C content measurements

⇒It is possible that such events are hidden in these periods

¹⁴C content (3000years)

Search for Cosmic Ray events→IntCal decadal ¹⁴C dataset

Sample Tree-A

AD775 Event (Miyake et al. Nature 2012)

This is the first detection of rapid increase of ¹⁴C content by significant amount

Verification by other trees

This strongly indicates that the anomaly is triggered by cosmic outbursts that affected the whole planet.

¹⁴C production rate [atoms/cm²]

<Production rate for this event>

- Miyake et al. 2012: (6.0±1.3)×10⁸ atoms/cm²
 ¹⁴C atoms/(П R²)
- Usoskin et al. 2012&2013: (1.3±0.2)×10⁸ atoms/cm²
 ¹⁴C atoms/(4⊓ R²)
- \rightarrow Their estimation is 5 times smaller than ours

Definition of production rate is different!

Our production rate is consistent with Usoskin et al. $(1.5\pm0.3)\times10^8$ atoms/cm² (Miyake) $(1.3\pm0.2)\times10^8$ atoms/cm² (Usoskin) Total ¹⁴C production (total incoming cosmic ray) is consistent with theirs!

Maehara et al. 2012

Cause of these events?

• Large SPE (Solar Proton Event)?

Melott & Thomas 2012, Usoskin et al. 2012&2013, Thomas et al. 2013

• Short GRB (gamma-ray burst)?

Hambaryan & Neuhäuser 2013

 \rightarrow Observed rate of short GRB is very low: 1/(3.7 × 10⁶) [1/yr]

¹⁴C event rate is very important!

¹⁴C content (AD550-1100)

Comparison of AD775 & 993

Cause of ¹⁴C event

Occurrence rate of ¹⁴C event: 1 event / 800 years

Inconsistency between a short GRB rate and ¹⁴C event rate

Large SPE is a more plausible cause! (more than 10 times larger than the largest SPE like the Carrington event)

→This indicates the possibility that such large SPEs will occur in the future.

Latest result

The ¹⁴C increment of the 993 event is reproduced by another tree!

If we shift either for one year, the two series are almost consistent

Age determination mistake was found in ad 946

Summary

- We measured ¹⁴C content from AD 550 to 1100
- We found two rapid increases in the ¹⁴C content (AD775, AD994)
- These ¹⁴C events are supported by some measurements of several trees (German, New Zealander, & other Japanese trees)
- Considering the occurrence rate of ¹⁴C events, the cause of ¹⁴C events must be due to large Solar Proton Events (> 10 × the Carrington event)
- This indicates the possibility that such large SPEs will occur in the future.