First Results of Coordinated Observations from Hinode, IRIS and New Solar Telescope

Alexander Kosovichev and BBSO Team

Big Bear Solar Observatory
NST Main Features

- All reflecting, off-axis Gregorian optical configuration
- PM: 1.6 m clear aperture with f/2.4
- Figured PM to 16 nm rms
- Effective focal length: 83.2 m (f/52 at Gregorian focus)
- FOV: 2' in prime focus
- Wavelength range from 380 nm to 1.7 µm in Coudé lab with AO
- PM active thermally controlled
- Integrated active optics (ao) and adaptive optics (AO)
- Quasi-static telescope alignment
- Diffraction limited: 0.06" @ 500 nm and 0.2" @ 1.56 µm with AO
- WFS, polarization and calibration optics immediately before M3
- Facility-class instruments

Big Bear Solar Observatory

NJIT
New Jersey's Science & Technology University
THE EDGE IN KNOWLEDGE
Off-Axis Telescope

Big Bear Solar Observatory
NST Scientific Instruments

- Adaptive Optics System (AO: AO-76, AO-308, MCAO)
- Visible Imaging Spectrometer (VIS)
- Near InfraRed Imaging Spectropolarimeters (IRIM, NIRIS)
- Cryogenic Infrared Spectrograph (CYRA)
- Broad-band Filter Imager (BFI)
- Fast Imaging Solar Spectrograph (FISS)

Big Bear Solar Observatory
Example: M1.2 flare in He I 10830

7/5/2012
7/5/12
1083nm
--Flaring
Initial Joint NST-IRIS-Hinode Program

- **Broad-band Filter Imager (BFI):**
 - TiO (7057A) 15-sec cadence ("bursts" of 150 images)

- **Visible Imaging Spectrometer (VIS):**
 - H-alpha scans (5 positions, -0.8, -0.4, 0, 0.4, 0.8 Å)
 - 15-sec cadence
Photospheric observations (TiO filter)
AO-76 (2012) vs. AO-308 (2013)
Sunspot as Never Seen Before

Big Bear Solar Observatory
Visible Imaging Spectrometer

- Single Fabry-Pérot etalon (D = 70 mm) plus narrow band interference filter
- Wavelength coverage: 550 – 700 nm
- Band pass: 5.8 pm
- Telecentric optical configuration
- Field of view: 70” by 64”
- Available spectral lines:
 - Hα (656.3 ± 0.15 nm)
 - Fe I (630.2 ± 0.15 nm)
 - NaD₂ (588.9 ± 0.15 nm)
 - more lines coming as needed …
- High speed computer with SSD HDs
- Spectroscopy cadence: a 11 points scan with multi-frames selection: < 15 s
VIS: H-alpha Observations

Big Bear Solar Observatory
Joint observations: AR 11850
(September 29 and 30, 2013)
AR 11850: Hinode G-band
AR 11850: NST TiO 7057 A

Big Bear Solar Observatory
AR 11850: IRIS Mg II k 2796A
AR 11850: IRIS Si IV 1400A
AR 11850
NST $H_\alpha = 0.4$
Two Ribbon Flare as Never Seen Before
8/27/2013
Two Ribbon Flare

Never Seen Before

Big Bear Solar Observatory
Summary

- The 1.6 m NST will be the largest aperture, highest resolution solar telescope until 2019 when 4 m ATST becomes operational.
- NST and its instruments will provide unprecedented high resolution photometric, spectroscopic and polarimetric data covering from the spectral range from 400 nm to 5 μm, to probe the solar atmosphere from the deepest photosphere to the base of the corona, and from the quietest to the most active Sun.
- The initial results reveal super-fine structure of solar flares and sunspots, and help to interpret the lower resolution observations from Hinode and IRIS.