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1. INTRODUCTION

* The Sun's interior oscillations, the p-modes, are normally trapped in a subsurface cavity, but behave very differently when they encounter an active region. The magnetic field turns them into a complex
mixture of fast, slow, and Alfven waves through two different mode conversion processes. They then partially escape into the solar atmosphere and partially reflect to rejoin the internal wave field, with
profound consequences for the local seismology. We present results, from Cally & Moradi (2013; MNRAS, 435, 2589), of simulations that show substantial “travel time” shifts that depend on magnetic field
inclination and orientation, and are closely related to escaping acoustic and Alfvénic wave fluxes.

2. NUMERICAL MODELLING

e We employ the 3-D linearised MHD wave propagation code SPARC (Hanasoge, 2007; PhD thesis) for the simulations. Our computational box spans 26.53 Mm in z (covering heights -25 <z < 1.53 Mm, with nz =
265, the vertical grid spacing varies from several hundred km deeper within, to tens of km in the near-surface layers) and 140 Mm in x and y (with nx = ny = 128 evenly spaced grid points providing a horizontal
resolution of 1.09 Mm/pixel).

* The background (thermodynamic) model consists of a convectively stabilised quiet-Sun solar model. In conjunction with this quiet-Sun model, we employ uniform B, = 0.5 and 1 kG magnetic fields inclined at 6
from the vertical. The field inclination is varied from 0° to 90°, in 10° increments.

« Waves are stochastically excited (at z = -0.16 Mm) in our computational box via the introduction of a forcing term in the vertical momentum equation such that a solar-like power spectral distribution is
obtained. The horizontal boundaries of the computational box are periodic, while the vertical boundaries are absorbent (PMLs). We simulate for 12 hours, but conduct our analyses on the last 8.5 hours of
each run.

 As random stochastic wave sources are used, Fourier filtering is applied to each relevant simulated physical quantity in order isolate selected horizontal wavenumbers, wave propagation directions and
frequencies. To do this we apply Gaussian ball filters in wavevector space, centred at particular horizontal wavevectors k, (for the cases we studied k, =1, 0.75 and 0.5 Mm™ with &k, = 0.2 Mm™), oriented at
angle ¢ (where 0° £ ¢ <£180° in 5° increments) from the x-direction, in combination with standard Gaussian frequency filters centred at v=3 and 5 mHz, with 6év = 0.5 mHz.

3. RESULTS

 The resultant filtered data cubes are analysed in two ways. First, the acoustic (slow) and magnetic (Alfvén) wave energy fluxes are calculated at z = 1.2 Mm (just below the PML layer) and plotted as contoured
functions of field inclination for v =3 and 5 mHz. The fast wave is evanescent, and so contributes no flux. Similarly, time-distance travel time perturbations relative to quiet Sun are also plotted against 6 and ¢.
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3.3 COMPARISON WITH BVP RESULTS * Four blocks of travel time perturbations 6t against field inclination 8 and orientation angle ¢. Top
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left: B, = 0.5 kG, v =5 mHz. Top right: B, = 1 kG, v =5 mHz. Bottom left: B, = 0.5 kG, v = 3 mHz.
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(2008; Sol. Phys., 251, 251) and Cally (2009; MNRAS, 395, 1309) we can investigate travel time The rows in each block are for k;, = 1, 0.75, and (for 5 mHz only) 0.5 Mm™ respectively.
perturbations relative to quiet Sun as well as acoustic and magnetic fluxes for horizontally invariant

atmospheres and magnetic fields. 4. CONCLUSIONS

* The figures below apply to the B, = 1 kG, v =5 mHz, k, =1 Mm™ case addressed above, displaying a

similar (but cleaner) picture to that obtained from simulation and the time-distance analysis. « At small magnetic field inclination, insufficient to provoke the cos 8 ramp effect, both fluxes and
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. e These results strongly indicate that processes occurring higher up in the atmosphere can
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 Top left: travel time perturbations. Top right: total fractional losses L from the reflected fast wave at
the base of the computational domain relative to that of the original injected monochromatic fast
wave. Bottom left: vertical upward acoustic flux at z = 2 Mm (top of the computational domain).
Bottom right: vertical upward magnetic flux atz=2 Mm.



