





## ・2009~2013;宇宙天気国際共同研究プログラム(CAWSES-II)

# 本日の講義の内容

- (1) 宇宙天気の概要
- (2)地球を取り巻く宇宙空間・超高層大気の構造
- (3) 宇宙天気に対する太陽・宇宙からの影響
- (4) 様々な宇宙天気現象
- (5) 宇宙天気現象の地球気候や人類社会への影響
- (6) 京都大学・理・附属天文台での地上光学観測

(1)宇宙天気の概要

宇宙天気とは・・

地球環境や地球上のテクノロジーに 対し影響を与えうる、宇宙空間環境。

主に太陽活動の地球磁場や大気への 作用、宇宙線、惑星間空間の微少天体 やゴミ、などにより影響を受ける。











#### これらの激しい太陽活動現象

↓ 惑星間空間中や、地球磁気圏内のプラズマ粒子の構成や電 流分布などを劇的に変動させ得る。

しかし、太陽活動現象と宇宙天気現象が1対1で単純明解 に対応付けられていないように見える事例が多数存在。

⇒ 宇宙天気研究の大きな課題

例)オーロラ 宇宙天気が乱された際に、地磁気嵐に 伴って現れる現象として、最も分かり やすい現象のひとつ。 しかし、大きな太陽爆発現象が発生した からといって、必ず発生する訳ではない。







## 宇宙天気の現代社会への影響:

日常生活のほとんどにおいて、我々が宇宙天気を直接意 識することは少ないかも知れないが、太陽からの宇宙環境 への擾乱が大きくなった時、人類の科学技術には、宇宙空 間、地上に関わらず影響を受けるものが多くある。

宇宙空間:無数の人工衛星(科学、気象、GPS、放送、 携帯電話、偵察等々)、宇宙ステーション、 スペースシャトルなどの宇宙船 地上:変電所、石油パイプライン、電離層を利用した無線 通信(ラジオ、TV、航空管制等々)

## 宇宙天気の地球自然環境に対する影響

#### (例)

- ・高層雲量の周期的変動
- ・気温の周期的変動(樹木の年輪)
- ・海面温度の周期的変動
- ・地層や氷河中の放射性同位体含有量の周期性
- ・約20年周期の超高層大気の電気伝導度(地磁気の日変動度)の変化と太陽紫外線量との関係(?
- ・太陽活動周期の長さの変動と陸上大気温度変動

## 宇宙天気は予報できるのか?

地球上の気象に対する「天気予報」は近年の気温、気圧、 雲などの物理量の3次元的な分布の観測点の増加と、コン ピュータによるシミュレーションの発達により、急速に精度 が良くなって来た。

宇宙天気予報についても、観測点の比較的多い地球磁気圏 内においては、コンピュータシミュレーションと合わせるこ とにより、太陽からの擾乱の到達が人工衛星上で観測されて から地球の磁場に変動が観測されるまでの時間や、その変動 の大きさを、ある程度予測可能になってきている。今後更に 太陽付近や惑星間空間のリモート観測の拡充、太陽地球間観 測衛星の増設、3次元シミュレーションの増強等により、少 なくとも太陽面での活動現象の発生時点の情報から、地球で 起こりうる現象の規模や時刻が予報ができるようになる可能 性は十分ある。 (2)地球を取り巻く宇宙空間・超高層大気の構造

(a)地球磁気圏 (b)放射線帯 (c)超高層大気、電離圏・電離層















(3) 宇宙天気に対する太陽・宇宙からの影響

- (a) 紫外線
- (b)宇宙線
- (c) フレア、CME
- (d)太陽風









## 各種の波長領域の太陽活動による変化の割合

| Spectral Band               | Solar Source Region                                      | 11-Year Cycle Variation | Terrestrial Absorption Region | Absorbers                                      |
|-----------------------------|----------------------------------------------------------|-------------------------|-------------------------------|------------------------------------------------|
| K rays, <10 nm              | corona                                                   | 10× to 1000×            | mesosphere                    | 0,, N,, O                                      |
| 0120 nm                     | corona, transition region,<br>chromosphere               | <u>2×ю 10</u> ×         | thermosphere, 150-300 km      | 02, N2, O, N                                   |
| .y α, 121.6 nm              | upper-middle chromosphere                                | 2×                      | mesosphere, 60-100 km         | 02, H2O, NO,<br>CH., CO,                       |
| 25–175 nm                   | chromosphere temperature<br>minimum                      | 50%                     | thermosphere, 100-160 km      | O <sub>2</sub> /SRČ                            |
| 175–205 nm                  | upper photosphere                                        | 15%                     | stratosphere, 20-80 km        | O <sub>2</sub> /SRB, H <sub>2</sub> O,<br>HCI  |
| 205–250 nm                  | photosphere                                              | 4%                      | stratosphere                  | O <sub>2</sub> , O <sub>3</sub> , HCl,<br>CFCs |
| 250–300 nm                  | photosphere                                              | 0.5%                    | stratosphere, troposphere     | O3, H3O2, NO2,<br>CIÓNO2,<br>HOCI, HNO         |
| 300-400 nm                  | photosphere                                              | 0.1%                    | troposphere, 0-15 km          | same as 250-300 nr                             |
| Fotal: 48% at<br>400-800 nm | photosphere                                              | 0.08%                   | troposphere, surface, ocean   | O3, H2O, CO2                                   |
| 120 nml                     |                                                          | 但汗制11年日                 | 日期で210座い                      | 土亦化                                            |
| 120 11114                   | 「<br>い<br>」<br>文<br>で<br>い<br>次<br>天<br>現<br>に<br>入<br>「 | 勿伯勤非牛虐                  |                               |                                                |









### 雑誌名:

Physical Review Letters 論文タイトル:

Probe of the Solar Magnetic Field Using the "Cosmic-Ray Shadow" of the Sun 著者:

K. Hakamada, J. Huang, K.Kawata, K. Munakata, M. Nishizawa, M. Ohnishi, M. Takita, T. Yuda et al. (The Tibet ASγ Collaboration)





















# (4) 様々な宇宙天気現象

- a) 地磁気嵐 (ストーム)
- b) オーロラ嵐(サブストーム)
- c) オーロラ
- d) デリンジャー現象
- e) 放射線帯の汚染
- f) 太陽高エネルギー粒子の飛来
- g) 電波ノイズ放射

# 地磁気嵐(ストーム) 地磁気嵐は赤道領域周辺で発生。 地球上最大規模のエネルギー現象。 磁気圏内部に太陽からCME等により大量のエネルギーが注入 →磁気圏内の対流が促進 →高エネルギー粒子が地球半径の2.5~3倍の高さ領域に 閉じ込められてさらに加熱が進む。 →地球を取り囲むような電流系を発生させる →地磁気の大幅な変動を誘発

# <u>オーロラ嵐(サブストーム)</u>

オーロラ嵐は太陽風やCMEによって磁気圏プラズマ シートに蓄えられたエネルギーが突如解放される(磁気 リコネクション?)ことによる現象。

極域(磁気緯度65~75度付近)の主に夜側でオーロラを 発生させる。 極域に加速された電子が降下してくる。 赤道域のプラズマシートは、地球に向かって低下し、 静止軌道衛星の高さ(6.6地球半径)よりも低い5地球 半径ほどまでに至り、衛星の帯電障害などを起こす 原因にもなる。









デリンジャー現象(Dellinger Phenomenon)<br/>(短波障害(SWF; Short Wave Fadeout) または<br/>突発性電離層擾乱(SID; Sudden Ionospherric Disturbance)<br/>とも呼ばれる)多くの場合、持続時間は数十分から数時間の程度。<br/>まれに数時間以上も続く場合もある。太陽フレアが主な原因。<br/>太陽フレアで発生したX線や紫外線が電離層に到達し、<br/>電離層のD層(60~100km)の電子密度が増加する。通常、短波(3 - 30 MHz)は、D層を通過し、F層(100km)で反射<br/>されるが、この現象が発生すると電子密度が増大したD層で<br/>短波が吸収されるようになり、長距離通信が不能となって

しまう。

























# 宇宙天気の地球自然環境に対する影響

## (例)

- ・高層雲量の周期的変動
- ・気温の周期的変動(樹木の年輪)
- ・海面温度の周期的変動
- ・地層や氷河中の放射性同位体含有量の周期性
- ・約20年周期の超高層大気の電気伝導度(地磁気の日変動度)の変化と太陽紫外線量との関係(?
- ・太陽活動周期の長さの変動と陸上大気温度変動





























## ディファレンシャルGPS、Differential GPS、DGPS

このための補正手段として、正確な時計をもち座標の わかっている固定局を設置し、GPS受信データから計 算した位置と固定局の位置の差から、精度を上げるな どの仕組み(ディファレンシャルGPS、Differential GPS、DGPS)の開発が行なわれてきている。 DGPSの補正信号は、かつてFM放送の利用されていな い帯域で送信するシステム(JFN系列の放送局で実施) があり、カーナビなどでの利用には有用であった (1997年5月~2008年3月)。 また、WAASやMSAS(MTSATを利用した日本の運

また、WAASやMSAS(MISAIを利用した日本の連 用)では、静止軌道の衛星からDGPSの補正信号を各 受信機に送信している(WAAS/MSAS静止衛星自体も GPS衛星同様、測位にも使われる)。

#### 人工衛星を利用した携帯電話サービス

- ・インマルサット(KDDIなど、静止軌道衛星 35786km 4 個)
- ・ワイドスター(NTT Docomo、静止軌道衛星2個)
   日本国内で最も普及(?)
   フェリー、航空機、高山地域などの公衆電話、孤島地域 など。
   大規模災害時の公共用回線として多くの公共機関にも
   設置される
   ・Thuraya (アラブ首長国連邦所有の3台の静止軌道衛星)
- ・ACeS(エイセス;東南アジア向け静止軌道衛星)
- ・ICO(高度10390kmの衛星10個使用)
- ・グローバルスター(高度1400kmの衛星48個使用)
- ・イリジウム(KDDI系。高度780kmの66個の衛星を使用)
- ・テレデシック(マイクロソフト系。288個もの衛星を使用) (インターネット)











(6) 京都大学・理・附属天文台での

地上光学観測

| マメリカ海洋大気<br>Marting American Americ | 圏局による宇宙天<br>VOAA Space            | 気警報<br>e Weather Scales                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------|
| Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Effects                           | <ul> <li>Easy way to</li> </ul>                                     |
| Geomagnetic<br>Storms<br>G1-G5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Satellites, Power<br>Grids, other | communicate<br>conditions and<br>forecasts                          |
| Solar Radiation<br>Storms<br>S1-S5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Biological,<br>Satellites, other  | <ul> <li>Like the hurricane<br/>or earthquake<br/>scales</li> </ul> |
| Radio<br>Blackouts<br>R1-R5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Navigation,<br>Radio              | • Will be hearing<br>these, seeing them<br>in the news              |

■ 太陽観測の宇宙天気研究における役割 ■

太陽面上での個々の爆発現象・衝撃波等の規模・速度 ・方向性・磁場の構造 など 様々なパラメータの把握

太陽面上構造物の現状から将来の活動状態を予測するための 統計的確実性を高めるサンプルデータの蓄積

このような太陽の活動の起動力となるメカニズム自体の解明 ⇒太陽内部からコロナに至るまでの運動状態・物理量の測定













-10 -



-13

<section-header><section-header>











| 他機関との役割分担                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>フィラメント噴出・CMEの物理量<br/>本体形状、<br/>衝撃波面、</li> <li>3次元速度場、</li> <li>密度分布、</li> <li>磁場構造、・・・</li> </ol> | <ul> <li>7.2</li> <li>2.2</li> <li>2.5</li> <li>2.5</li></ul> |
| 2)太陽風速度・密度の3次元分布<br>高速領域と低速領域の3次元分<br>時間変動、<br>CIR衝撃波面の位置・強度<br>定在IMF構造                                    | の把握<br>本<br>名大 IPS (太陽風速度分布)<br>三鷹 Solar Flare Telescope、周期活動望遠鏡<br>(光球・彩層磁場分布)<br>飛騨SMART(彩層磁場分布)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3)紫外線を中心とする電磁波の加<br>些外線放射量に大きく影響する                                                                         | 対量変動の把握                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### 紫外線放射量に大きく影響する 彩層の輝度・温度分布 紫外域の波長帯別放射量推定

三鷹 Solar Flare Telescope、周期活動望遠鏡 (彩層Ho多波長画像) 飛騨SMART, FMT(彩層Ha、Call 多波長画像) 九大全面望遠鏡(彩層 Call K 画像)









|                           | ドマッフ                      | パ(京大                  | 太陽配                         | ī爆発                          | 監視シ                      | ステム            | )        |
|---------------------------|---------------------------|-----------------------|-----------------------------|------------------------------|--------------------------|----------------|----------|
|                           |                           | 第一年度                  | 第二年度                        | 第三年度                         | 第四年度                     | 第五年度           | 15       |
|                           | 2014                      | 2015                  | 2016                        | 2017                         | 2018                     | 2019           | 7        |
| カルシウム線<br>(8542Å)<br>彩層全面 | カルシウム<br>線磁場偏光<br>メカニズムの  | 新フィル                  | ∕夕開発                        | CMOSカメラ、<br>高速回転波長<br>板の導入   | 制御システム<br>の整備、<br>新システムの | 新システムに<br>よる観測 | <b>]</b> |
| 輝度·磁場<br>観測装置             | 研究                        |                       | 新光学系の製作                     |                              | 搭載                       |                |          |
| Ηα線                       | 飛騨SMART<br>旧システムによる観測・データ |                       | CMOS力/ラ搭載                   | ±≤2,7=,1   −   Z (40 34      |                          |                | ]        |
| 彩眉<br>全面多波長<br>細淵         | 書領                        | フィルタ改修&搭載             |                             | き くつく 立にから就成                 |                          |                |          |
| ネットワーク                    | ペルーFMT旧シ<br>ステムによる機<br>測  | フィルタ更新                | 新システムによる観測                  |                              |                          |                |          |
| 観測装置<br>整備以外の<br>項目       | メタデータ<br>(特)              | 豊備によるデータ<br>を助教、PDF研究 | 9共有化、デー<br>国際共同<br>に員と技術補佐員 | 9書積装置の拡5<br>研究の推進<br>の雇用、関係各 | モと観測制御シス・<br>国との間の人的ジ    | テム維持、<br>8流)   | ]        |







検出 => N. Narukage et al.(ApJ, 572, L109, 2002)

=> N. Narukage et al.(ApJ, 572, L109, 2002) Eto et al. ....





| No                           | Time                                                                                                                       | Location/NOAA                                                                                                   | Type (a)                         | <b>SYT</b>                     | FIT                                  | COFS(min)                                                                                                                          | CME                      |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 1                            | 11/05/02 00-15 02-15                                                                                                       | S20W17/                                                                                                         | <b>F</b> (42)                    | A                              | LIL                                  | GOES(IIIII)                                                                                                                        | CIVILS                   |
| 1                            | 11/03/92 00.13-02.13                                                                                                       | 32000117                                                                                                        | L (43)                           | ~                              |                                      | -                                                                                                                                  |                          |
| 26                           | 10/27/98 23:34-36:39                                                                                                       | N18E40/8369                                                                                                     | $\mathbf{Q}(0)$                  | -                              | LB                                   | C1.6                                                                                                                               | no                       |
| 27                           | 01/30/99 00:00-01:50                                                                                                       | S34E20                                                                                                          | E (84)                           | А                              |                                      | B3.3                                                                                                                               |                          |
| 28                           | 02/09/99 03:07-05:22                                                                                                       | S27W39/8453                                                                                                     | E (13)                           | A                              | A/EW/D <sup>†</sup>                  | C2.3                                                                                                                               | ves                      |
| 29                           | 02/16/99 01:42-04:15                                                                                                       | S27W18/8458                                                                                                     | E (53)                           | A                              | , ,                                  | M3.2                                                                                                                               | ·                        |
| 30                           | 06/01/99 06:29-07:08                                                                                                       | S23E17/8557                                                                                                     | $\mathbf{Q}(0)$                  | LB                             |                                      | C6.2                                                                                                                               | no                       |
| 31                           | 01/19/00 00:28-01:47                                                                                                       | N08W18/8829                                                                                                     | E (36)                           | Α                              | A/D                                  | C1.4                                                                                                                               | yes                      |
| 32                           | 01/28/00 05:35-06:20                                                                                                       | S28W20/8841                                                                                                     | $\mathbf{Q}(0)$                  | LB                             | ĹB                                   | B4.4                                                                                                                               | no                       |
| 33                           | 04/06/00 03:48-05:48                                                                                                       | S27W02/                                                                                                         | $\mathbf{Q}(0)$                  |                                | LB                                   | C1.4                                                                                                                               | no                       |
| 34                           | 04/25/00 01:05-01:47                                                                                                       | N23W27/8972                                                                                                     | E (51)                           | Α                              | A/FE                                 | C1.1                                                                                                                               | yes                      |
| 35                           | 05/08/00 04:19-07:40                                                                                                       | S21W03                                                                                                          | E (45)                           | А                              | A/FE/D                               | B6.8                                                                                                                               | yes                      |
| DB<br>B tyj<br>upti<br>iasi- | Type vs. Coronal s           pe         A           ve         22 (71%) 0           eruptive         1 (3%) 8           23 | Signature           LB         Total           (0%)         22           (26%)         9           8         31 | DB type<br>Eruptive<br>Quasi-eru | B Tyr<br>(SXT<br>(A)<br>uptive | be vs. CM<br>& EIT)<br>8 (<br>(LB) 0 | $\begin{array}{c c} \mathbf{E} \ \mathbf{Association}\\ yes & no \\ 53 \% & 0 \ (0 \% \\ (0 \%) & 7 \ (47 \% \\ 8 & 7 \end{array}$ | on<br>Tot<br>(6)<br>(76) |











### **ISWI Activities**

March 18th 2010:

Installation of the FMT in the Solar Station (ESI) of ICA Univ. was completed.











# さらに、

- ・太陽フレア爆発の位置、大きさや タイミング
- ・噴出フィラメントの地磁気への 影響の大きさ

の、より正確な予測をするためには、 太陽面での爆発や噴出付近の、 磁場ベクトルの分布構造の情報が不可欠 となってくる。



























![](_page_23_Figure_2.jpeg)

![](_page_23_Figure_3.jpeg)

![](_page_23_Figure_4.jpeg)

![](_page_23_Figure_5.jpeg)

![](_page_23_Figure_6.jpeg)

より長期・多地点の地磁気Sqデータを解析した結果

- 1)Sq変動振幅の単調増加現象は、もっと長期的な Sq変動のごく一時期の傾向を見ているにすぎない。(地 球全体のCO2の継続的増加に原因を押しつけるのは 難しい。)
- 2)Sq変動振幅は、長期的に見ると、赤道地帯を除き、約 20年毎に増加・減少のフェーズが転換しているようであ る。
- 【注意点】Sq変動振幅から太陽活動の成分を取り除く作業 をする際、その指標として、現在太陽からのF10.7放射 量変動データを用いている。

## Sq振幅の長期的増減変動の2つの解釈

- A)F10.7放射量が超高層大気に影響を与えている紫 外線量を適格に反映していると仮定すると、超高層 大気自体、もしくは中低層大気からの影響の過程の 中に、20年毎の変動を生み出すメカニズムが存在し ている事を示している?
- B)F10.7放射量変動が、実際は超高層大気に直接的 に影響を与えている紫外線波長域(50~150nm) の放射量変動と必ずしも一致しておらず、Sq変動の 太陽活動周期性分を過小評価している?

![](_page_24_Figure_8.jpeg)

期的な紫外線指標は無いのか? (勿論、現在は衛星による紫外線分光データを直接使 用すれば良いが、装置・衛星毎の絶対値の誤差が思っ た以上に大きいので要注意。さらに過去に遡って長期 変動を調べる際には、より古くから存在する観測データ から指標を取り出せるようにしておかなければならな い。)

![](_page_24_Figure_10.jpeg)

![](_page_24_Figure_11.jpeg)

![](_page_24_Figure_12.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_25_Picture_2.jpeg)

![](_page_25_Picture_3.jpeg)

![](_page_25_Picture_4.jpeg)

![](_page_25_Figure_5.jpeg)

![](_page_25_Figure_6.jpeg)

![](_page_26_Figure_1.jpeg)

![](_page_26_Figure_2.jpeg)

## 参考文献

- "THE SUN AND SPACE WEATHER" by Arnold Hanslmeier (Kluwer Academic Publisheres), 2002
- ・「宇宙と地球環境」 石田惠一 著 (成山堂書店) 2000年
- ・「総説 宇宙天気」柴田一成、上出洋介著 (京都大学学術出版会)2011年
- "Space Weather -- A Research Perspective ---" by the National Academy of Sciences, 1997
- "Solar Physics and Terrestrial Effects" by Roger P. Briggs, Robert J. Carlisle, Barbara B. Poppe (Space Environment Center), 1996
- NOAA Research Science Education HomePage, Space Environment TOPICS on WEB by Space Environment Laboratory, NOAA http://www.sec.noaa.gov/