太陽における粒子加速

太陽フレ アから放 出される 電磁波

An LDE flare

21-FEB-1992 Flare SXT Image Filter : AI.1

03:10:30 UT 04:52:22 UT 06:35:30 UT 09:06:42 UT electron temperature ~10^7 K, electron density ~ $1\sqrt{9} - \sqrt{10} - \sqrt{10} - \sqrt{10}$

4

100MK plasma located above the loop top

Is inflow confirmed? Discovery of Inflows with EIT

Yokoyama et al

Direct observations needed with Hinode EIS/XRT

Petschek reconnection takes place

Sweet-Parker

Inflow goes through diffusion region.

Petschek

Inflow goes through slow shock, bypassing diffusion region.

All the physical parameters are determined from observations with compressible Petschek theory (Tsuneta 1996, ApJ)

Reconnection outflow領域 Alfven Mach数~5 Acoustic Mach数~1

TABLE 1

PHYSICAL PARAMETERS OF UPSTREAM/DOWNSTREAM OF THE MACNETIC SEPARATRIX LINES AND SLOW SHOCK.

Parameter	Upstream	Downstream
Temperature	<7 MK	>12-13 MK
Density	10 ⁻⁹ cm ⁻³	$\sim 5 \times 10^{9} \text{ cm}^{-3}$
Pressure	$3 dyn cm^{-2}$	$< 20 \text{ dyn cm}^{-3}$
Magnetic field	20-30 G	5 G
Plasma ß	~ 0.25	
Flow velocity	56 km s ⁻¹	800 km s^{-1}
Sound Mach number	~0.1	
Alfvén Mach number	~ 0.07	
Alfvén speed	800 km s ⁻¹	155 km s
Sound speed	550 km s ⁻¹	770 km s ⁻¹
Mass flux	$\sim 1.7 \times 10^{38} \ { m s}^{-1}$	$\sim 2.4 \times 10^{35} \text{ s}^{-1}$

TABLE 2 PHYSICAL PARAMETERS OF THE RECONNECTION REGION

Parameter	Value
Cool channel temperature	10-6 MK
Cool channel density	5-25 × 10° cm ⁻³
Cool channel pressure	20-50 dyn cm ⁻¹
Density jump across the slow shock	<5
Temperature jump across the slow shock	$\sim 1 (y \sim 1)$
Half-angle of the slow shocks	0:8-1:8
Half-angle of the separatrices	5°-11°
Kinetic energy of the outflow	5 × 10 ²³ ergs s ⁻¹
Shock heating rate	9 × 10 ²⁷ ergs s ⁻¹
Total energy	$14 \times 10^{11} \text{ ergs s}^{-1}$
Magnetic energy supply from the upstream	6 × 10 ²⁷ ergs s ⁻¹
Soft X-ray loop height	~6 × 10 ⁴ km
X-point height	\sim 14–24 × 10 ⁴ km above the photosphere
	$\sim 8-18 \times 10^4$ km above the loop top
Slow shock length	$\sim a \text{ few} \times 10^4 \text{ km}$

Magnetic reconnection highly efficient engine based on the analysis of 1992 Feb 21 flare

Energy budget in solar flares

• Total energy of the system

- L=5x10⁴km, B=200G
$$E = L^3 \cdot \frac{B^2}{8\pi} \approx 10^{32} \text{ erg}$$

- Energy rate
 - Inflow speed is approx. 7% of Alfven velocity (α =0.07)

$$E = \alpha V_{A} \cdot L^{2} \cdot B^{2}/4\pi = 10^{30} \text{ erg/sec}$$

 Magnetic reconnection is extremely efficient (~100%) cosmic engine.

Yohkoh founds

- All the transients heating is due to magnetic reconnection.
- Slow shock plays a key role, and very efficient energy conversion is going on with reconnection.
- Fast outflow is evidenced by superhot source seen in hard X-rays.
- Inflow is observed, and the speed is consistent with estimation.
- Particle acceleration takes place in outflow and fast shock region.

硬X線フレア

- エネルギー: 10²⁹-10³²エル
 グ
- 時間スケール:数10秒 1 時間
- ほとんどの場合、2つ目玉構 造をしている(電子が光速 近くまで加速され、彩層に衝 突し制動放射で硬X線を出 す)。
- ・ 陽子も加速される場合がある。

13

フレアの時間的進化:加速から加熱へ

加速と加熱

- 加熱に分類
 - 分布関数はMaxwell:Te=Ti
 - 分布関数はMaxwell:Te>Ti、Te<Ti
 - トランジェント加熱(フレア)では電子温度とイオン温度は一致して いないだろう。
 - ・比較的長い緩和時間(分のオーダー)のあとTe=Tiとなる。
 - 分布関数はMaxwellでないが、バルク加熱
- 加速
 - 電子、陽子の一部を選択的に加速。一般に加速粒子の 等価温度は、背景プラズマのそれを大きく上回る。
- ・ 加速と加熱の中間領域はありえる。

Four conditions that any theory in electron acceleration should meet

- Maximum energy
 - 100keV~10MeV
 - Background plasma temperature is 0.1-0.3keV, and a factor of $10^3 \sim 10^5$ in energy is needed.
- Initial acceleration from thermal pool
 - Acceleration has to win against collisional drag force.
- Acceleration time
 - 1 second to accelerate to 100keV-1MeV
 - Note that Aflven time scale is given by $L/V_A \sim 10 \sim 100$ sec (L=10⁴⁻⁵Km)
 - Since inflow speed is about 7% of the upstream Alfven speed, the duration of flares is $L/\alpha V_A \sim 100-1000$ seconds
 - Acceleration time scale of 1 second indicates the size of L=10³Km
- Number of accelerated electrons
 - -10^{33-35} /sec
 - Assuming the size of the acceleration site L=10⁴Km, 10% of background electrons have to runaway

電場による粒子加速

Dreicer field: electronがrun-away する電場強度E_D

$$m\dot{v}_D = -eE - mv_D v_{ei}(v) \quad (e > 0)$$

Large angle collision

$$Drag = -mv_D \upsilon(v) = -\frac{ne^4 \ln \Lambda}{16\pi\varepsilon_0^2 m} \frac{v_D}{(v_D^2 + v_T^2)^{1.5}}$$

 V_D : test particle v_T : thermal speed

E_D: Dreicer 場(全粒子がrun-awayする電場の強さ)

宇宙天気サマースクール

21

E_D: Dreicer 場 (全粒子がrun-awayする電場の強さ)

$$eE_D = \frac{ne^4 \ln \Lambda}{16\pi\varepsilon_0^2 mv_T^2}$$

$$E_D[V/cm] = 1.9 \times 10^{-16} \frac{n[cm^{-3}]}{T[keV]} \ln \Lambda$$

$$T = 2keV, n \approx 10^{11} cm^{-3} \qquad E_D = 2 \times 10^{-2} V / m$$
$$\ln \Lambda = 20$$
$$l = 10^5 km = 10^8 m$$

runaway粒子数の計算 Kruskal and Bernstein 1964

$$n_r = 0.35n_0(\mathrm{cm}^{-3})v_{\mathrm{eff}}(\mathrm{s}^{-1})\epsilon^{-3/8} \exp f(\epsilon) \,\mathrm{s}^{-1} \,\mathrm{cm}^{-3}$$
$$f(\epsilon) = -\left(\frac{2}{\epsilon}\right)^{0.5} - \frac{1}{4\epsilon}.$$

E = E / E_D
 ^εが求まれば、ruaway粒子数が評価できる(Tsuneta 1985)。 ε~0.1-0.3でフレアの加速電子数を説明。ただし、電流密度が大きすぎ、打ち消すためリターン電流が必要。

加速された粒子のスペクトルを求める

粒子加速のinjection問題(その1)²⁰⁷

粒子をthermal pool から直接加速できる

$$\frac{d}{dE}\left(\frac{dE}{dt}\Big|_{\text{mix}}N\right) + \frac{N}{\tau} = 0 \qquad \frac{\partial N}{\partial t} = 0 \quad q = 0$$

電場加速の場合、以降: E→εと書く。

$$m\frac{dv}{dt} = +eE \quad (E > E_D) \quad (e < 0) \quad (衝突項なし)$$

運動方程式から加速レートは、加速時間は、

$$\frac{d\varepsilon}{dt} = +\sqrt{\frac{2}{m}}eE\varepsilon^{1/2} \qquad \varepsilon \propto t^2$$

$$\frac{d}{d\varepsilon} \left(\frac{d\varepsilon}{dt} N \right) + \frac{N}{\tau} = 0$$

$$N \propto \varepsilon^{-0.5} \exp\left\{-\left(\frac{\varepsilon}{\varepsilon_0}\right)^{0.5}\right\} \qquad \varepsilon_0 = \frac{e^2 E^2}{2m}\tau^2$$

T時間走ってescapeするときのエネルギー

$$v = \frac{eE}{m}\tau \quad \Rightarrow \quad \varepsilon = \frac{1}{2}mv^2 = \frac{1}{2}m\left(\frac{eE}{m}\right)^2\tau^2 = \frac{e^2E^2}{2m}\tau^2_{27}$$

電場加速のときの特徴的スペクトル

宇宙天気サマースクール

Three types of Hard X-ray Sources Masuda et al.

Where does particle acceleration take place?

宇宙天気サマースクール

Tsuneta 1996

Location of acceleration site due to time-of-flight method

(CGRO/BATSE)

Hard X-rays mainly come from footpoints
Higher energy X-rays have earlier peak in time profile
Time difference is due to difference in time-of-flight, giving distance between acceleration site and footpoint.

Location of acceleration as obtained from time-of-flight method coincides in position with loop-top hard X-ray source or above.

Aschwanden et al. 1996

Where are electrons accelerated?

1. Simultaneous brightening of foot point (Sakao)

Acceleration mechanism

1. field aligned Sub-Dreicer field $E_{\parallel} \ll E_D$

<u>not consistent with</u> <u>loop top acceleration site</u>

2. Super-Dreicer field $Ef \gg ED$ at the neutral sheet

electron number problem

3. Shock Fermi acceleration fast shock and loop top source foot point source <u>consistent with all observations</u> 宇宙天気サマースクール

フェルミ加速の基礎

Fermi I

$$\Delta \varepsilon = \left(\frac{4u}{c}\right)\varepsilon \rightarrow \frac{d\varepsilon}{dt} = \frac{2u}{\ell}\varepsilon$$
 1回の衝突で獲得
するエネルギー

 → $\varepsilon \propto \exp\left(\frac{2u}{\ell}t\right)$

 太陽
 1秒間の
 $\ell = \frac{2\times 500[\text{km/s}]}{10^3[\text{km}]} = 1[\text{s}^{-1}]$

 t = 3[sec] $\rightarrow \varepsilon/\varepsilon_0 = 20$
 $\varepsilon_0 = 0.2[\text{kev}] \rightarrow \varepsilon = 4[\text{kev}]$
t = 5[sec] $\rightarrow \varepsilon/\varepsilon_0 = 150$

 SNR
 $\left\{\ell \sim 1pc \sim 3 \times 10^{18}[\text{cm}]$
 加速エネルギー

 u $\sim 5000[\text{km/s}] = 5 \times 10^8[\text{cm/s}]$
 加速エネルギー
 $\varepsilon \propto \exp\left(\frac{2u}{\ell}t\right)$

 m速時間
 $\tau \sim \frac{\ell}{2u} = \frac{3 \times 10^{18}}{6.5 \times 10^8}$
 10¹⁴ [eV] (ASCA)

 m速時間
 $\tau \sim \frac{\ell}{2u} = \frac{3 \times 10^{18}}{6.5 \times 10^8}$
 10¹⁵ [eV]?@= 2600 年

 = 3 \times 10^9 [s]
 10¹⁷ [eV] t = 3000 年
 37

$$-\left(\frac{d\ddot{a}}{dt}\right)_{loss} = 7.6 \times 10^{-12} \, n \, [\text{cm}^{-3}] E \, [\text{MeV}]^{-\frac{1}{2}} \, [\text{MeV/s}]$$

for
$$E > E_c = \frac{1}{2} M v_{the}^2 \sim 0.5 [\text{MeV}] \quad (T = 2 \times 10^6 [K])$$

Fermi Iを例にとる(陽子の場合)

$$\begin{aligned} \frac{d\varepsilon}{dt}\Big|_{m_{\bar{\mathbb{R}}}} &= \frac{u}{\ell}E\\ \frac{dE}{dt}\Big|_{m_{\bar{\mathbb{R}}}} &= \left|\frac{dE}{dt}\right|_{loss} \quad \text{at } E = E_c\\ &\to E_c = 0.11 \left(\frac{n_{10}[cm^{-3}]\ell}{u}\right)^{\frac{2}{3}} \quad n_{10} = 1, u = 1000[\text{km/s}], \ell = 10^4[\text{km}]\\ &\to E_c = 0.5[\text{MeV}] \end{aligned}$$

陽子加速には別の加速機構が必要? 38

$$-\frac{d\varepsilon}{dt}\Big|_{loss} = 3.0 \times 10^{-10} \, n [\text{cm}^{-3}] \frac{1}{\beta} [\text{keV/s}], \ \beta \equiv \frac{\upsilon}{c}$$

Fermi Iを例にとる(電子の場合)

$$\begin{cases} n = 3 \times 10^{10} [cm^{-3}] & \beta_c = 0.32 \\ E_c = 26 [keV] \\ n = 3 \times 10^{11} [cm^{-3}] & E_c = 160 [keV] \end{cases}$$

Fermi II(stochastic)215
$$\Delta \varepsilon = \left[\frac{c+u}{2c} \frac{4u}{c} + \frac{c-u}{2c} \left(-\frac{4u}{c} \right) \right] \varepsilon$$
 ε ε $= 4 \left(\frac{u}{c} \right)^2 \varepsilon$ ε u v $\frac{d\varepsilon}{dt} = 4 \left(\frac{u}{c} \right)^2 \varepsilon \frac{c}{\ell} = \alpha$ v v $\nabla \oplus \oplus \oplus \oplus \oplus$ ε ε ε $\nabla \oplus \oplus \oplus \oplus$ ε ε ε $\nabla \oplus \oplus \oplus$ ε ε ε $\nabla \oplus \oplus \oplus$ ε ε ε $\nabla \oplus \oplus \oplus \oplus$ ε ε ε $\nabla \oplus \oplus \oplus \oplus$ ε ε $\nabla \oplus \oplus \oplus \oplus$ ε ε $\nabla \oplus \oplus \oplus \oplus$ ε ε $\nabla \oplus \oplus \oplus \oplus \oplus$ ε $\nabla \oplus \oplus \oplus \oplus \oplus$ ε $\frac{d\varepsilon}{dt}$ ε <

Fermi II

$$N \propto \varepsilon^{-\left(1+\frac{1}{\alpha\tau}\right)} \rightarrow \varepsilon^{-1}(\tau \rightarrow \infty : \text{no escape})$$

太陽
1+
$$\frac{1}{\alpha\tau}$$
 = 3 ~ 4 $\rightarrow \alpha\tau \sim \frac{1}{3}$, $\tau \approx 10$ sec

-

宇宙天気サマースクール

42

加速機構のまとめ

	スペクトル	加速 Time scale	Injection Energy
$DC - \vec{E}$	$\varepsilon^{-0.5}\varepsilon^{-\left(\frac{\varepsilon}{\varepsilon_0}\right)^{\frac{1}{2}}}$ $\varepsilon_0 = \frac{e^2 E^2}{2m}\tau^2$	$\varepsilon \propto t^2$	$E \sim E_D$
Betatron	$\varepsilon^{-\left(1+\frac{1}{dt}\right)}$ $\alpha = \frac{1}{B}\frac{dB}{dt}$	$\varepsilon \propto \exp(\acute{a}t)$	あり
Fermi I	$\varepsilon^{-\left(1+\frac{1}{dt}\right)}$ $\alpha = \frac{2u}{\ell}$	ε ∝ exp(át)	p:E _c = 0.5[MeV] e:E _c = 20 ~ 100[keV] あり
Fermi II (rel)	$\varepsilon^{-\left(1+\frac{1}{dt}\right)}$ $\alpha = \frac{4u^2}{c\ell}$	ε ∝ exp(át)	あり
Fermi II (non-rel)	$\varepsilon^{-0.5}\varepsilon^{-\left(\frac{\varepsilon}{\varepsilon_0}\right)^{\frac{1}{2}}}$ $\varepsilon_0 = 4\tau^2 m u^4 / \ell^2$	$\varepsilon \propto t^2$	あり

リコネクションのアウトフロー 領域は理想的な粒子加速場所?

Diffusive shock acceleration with oblique (perpendicular) shock

- (Tsuneta & Naito, ApJ, 495, L67, 1998)
 Two Slow shocks serve to contain accelerated
 electrons with mirror configuration.
- Injection problem associated with Fermi acceleration can be overcome with pre-heating with slow mode shocks to 20MK, and efficient acceleration with oblique shocks.

第2のインジェクション問題

粒子を拡散させる(跳ね返す)適切な波があるか? Alfven wave? whistler wave?

$$l = \frac{k_1}{u_1} + \frac{k_2}{u_2}$$

- *l* diffusion length
- k diffusion coefficient
- *u* flow speed

 $l > l_{Bohm} = \eta \kappa_B / u \approx 2\eta E / (3m\omega_{ce}u) \approx 0.06\eta$ km for E = 100keV, B = 10G κ_B Bohm diffusion coefficient $\eta = 1-100$ If we conservatively assume $\eta = 10^4$, l = 600 km

ŀ7

Upward motion of plasmoid

Plasmoid emission coincides in time with HXR peak Electron acceleration ~dynamical phenomena

Summary

- We have some understanding on the heating process, while particle acceleration is poorly understood.
- Observations indicate that acceleration site is located close to the reconnection site.
- Acceleration mechanism indicates shock-related acceleration mechanism such as Fermi acceleration, some form of turbulent (wave) acceleration.
- Both electrons and ions are accelerated via the same mechanism.
- Dynamical phenomena driven by MHD instability resulting in plasmoid eruption may be related to particle acceleration.
- There are flares with intense heating without acceleration.