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Magnetic activity in the Sun

Soft X-ray, Yohkoh



Magnetic activity inevitable in
gravitationally stratified bodies

radiation
Dissipation
(Reconnection ~
V4 > -
shock, particle acceleration) Emag Eth Ekln
. Gravity
Transportation
(wave, emerging flux, flow)
Magnetic
A buoyancy
B
Generation ~
Eth > Ekin Emag

(dynamo)



Why we need to consider reconnection

* Magnetic energy converted to thermal and kinetic energies
of plasma

» Classical resistivity in space and astrophysics is tiny:
resistive time in solar corona t ~ 4nL?/c?n ~ 1,000,000
year!

 Time scale of solar flares ~ 100 s.

* We need a mechanism to accelerate the dissipation many
orders of magnitudes => magnetic reconnection
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In the presence of finite resistivity, anti-parallel field lines separated by a
current sheet are cut and glued so that the connectivity of field lines

changes.
The reconnected field lines accelerate plasma by the tension force like a

catapult.



Magnetic reconnection in astrophysics

Uzdensky (2006, astro-ph/0607656)
... the most important reconnection mechanism in Astrophysics invokes
waves, a certain type of waves, in fact. Called handwaves (See Fig 1).
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Fig. 1..— Main Reconnection Mechanism in Astrophysics.

The mechanism works like this: Well, we know that fast reconnection
happens in the Solar corona, and in the Earth magnetosphere. So it should
also happen in OUR astrophysical system.



Classical theories 1. Sweet-Parker reconnection
(Parker 1957, Sweet 1958)

Assumption: stead state, incompressible.

Outflow velocity Vout = VA = B/(4mp)"? (Alfven velocity)
Consider mass conservation: VinL = V,[

From induction equation: BVin =nJ ~ nB/I

Then we obtain Vin/VA = (LV,/n)°?> ~ 1 year.

Problem: Still too slow!



Classical theories 1. Petschek reconnection
(Petschek 1964)

* Sweet-Parker reconnection is slow because the outflow width
is narrow and hence plasma expelling is ineffective.

* If resistivity is (somehow) localized, standing slow shocks is
formed and the magnetic energy is converted via slow shocks.

* The outflow width can become larger and reconnection can be
fastV,,~ 0.1V,

Problem: how to localize resistivity?
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* Hall-effect (or other kinetic instabilities) becomes important
when current sheet width is smaller than ion inertia length
c/wpi

* Hall reconnection produce Petschek-like configuration and
fast reconnection
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"Scale-gap” problem

=Y » c/wy; in corona ~ 102 cm
' » Spatial size of flare ~ 10° cm

| Reconnection Jet

\.
/11 \J\Fast Shock

; How can we fill the 7-orders gap?

Yokoyama & Shibata 1998
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Observational evidence for magnetic reconnection
in the corona (before Hinode/SDO)

21—Fch— 1992 Cusp-shaped loop
Flarec on The East Limb (TSU neta+92)

Loop-top Hard X-Ray source
(Masuda+94)




Supra-arcade downflow
(McKenzie Hudson99, Innes+03, Asai+04,
Savage+12)

Reconnection inflow
(Yokoyama+01; Narukage & Shibata06
Lin+05, Hara+06)

Vi a0, ~0.01V,,

inflow




Measurement of
reconnection rate

Isobe+02, 05
Qiu+02, 04
Jing+05
Asai+02,04
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* Vi aow: 1—100km/s~0.001-0.1V, * spatial/temporal average
* E=V, q,n X B~ 10—1000 V/m

eEL ~ 1—100 GeV ... comparable to highest energy ions



Spectroscopic diagnostics by Hinode/EIS

Reconnection outflow —\ m ; Reconnection inflow
EIS Fe XXIV & Ca XVII @ / EIS Fe X & Fe X1
. Doppler velocity "« Doppler velocity
==V iiow €OS & ~200—400 km/s Vo= Vinaow €0s 6, ~—20 km/s

* T.=1.2 MK from Fe X1I/Fe X ratio
e n,=2.5x10? cm™ from Fe XII ratio

Bright blob
« EIS Fe xxi11 & Fe xXx1v
T.=12 MK from line ratio
n, ~ 1x10'"" ecm™ from EM

Vit~ 100 km/s at impulsive phase

. T 9 4 MK from Fe XX1v/Ca XVII ratio

* n, ~4x10° cm™ from EM /
Warm outflow (EIS Fe Xv & Fe xw)
appeared before H> cak

* XRT: faint X-ray enhancement
* RHESSI 4-6 keV thermal source

T.=12 MK from HXR spectrum
« STEREO 195A band enhancement

Upflow: Vpy ~—20 km/s
EIS Fe XX1I1 & Fe XXIV

Downflow: V, ~ 10 km/s -

EIS Fe XV & Fe XVI (Fe XX1v A192 contribution)
Downward motion V}, ~ 30 km/s
EIS Fe xxi11 & Fe xXx1v
i — —
Hard X-ray nonthermal source -~ ~Footpoint brightening
RHESSI 1540 keV as ‘two ribbon structure’

TRACE 171A band images

“Standard model” confirmed qualitatively.
More examples desired to examine the role of shocks. Hara et al. 2011



* “Lightening”-like reconnection event
observed by SDO/AIA

* Formation, coalescence and ejection of
multiple plasma blobs
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2006/11/23 00:47:25
XRT Al_poly filter exp. 16385msec

Magnetic reconnection between
buoyantly rising loop and open field
(Yokoyama & Shibata 1995)




Magnetic reconnection in the chromosphere

Anemone-jet
Shibata+ 07




Reconnection + plasma jets at various heights

X-ray jet
~100,000km
(corona)

EUV jet ~ 10,000 km K& 13:19:08UT |{f) = * 13:19:06UT
(upper chromo ~ :
transtion region)

Nishizuka+07

2007/12/17
21:27:45
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Electron Mean Free Path (cm)

Chromosphere is collisional and partially ionized
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Plasma parameter very different from (almost) collisionless

and fully ionized corona

Reconnection is chromosphere poorly studied (some
pioneering works by Chae, Litvinenko, Sakai, Krishan et al)
e Also important in molecular clouds and protoplanetary disks

(Zweibel, Lazarian, Sano et al.)



Similar astrophysical plasmas:
molecular clouds and protoplanetary disk

¢ Sano & Stone 2002
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*Hall dominates in inner disk ... photosphere - like
Ambipolar dominates in outer disk and molecular clouds ... chromosphere-like



Height (km)

Chromospheric reconnection
intermittent and bursty

- & 3§ % & B %

03:00

K.A.P. Singh et al. to be submitted soon.



Current sheet thinning by ambipolar diffusion
(Brandenburg & Zweibel 1994)

Induction eq. for partially ionized plasma
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Effect of non-uniform ambipolar diffusion

color: current densit

Ambipolar diffusion # 0

Ambipolar diffusion localized in x < £20
Ohmic resistivity is uniform
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In Sweet-Paker-like stage, the reconnection = Reconnection rate ~ 0.001
region consists of 3 layers: :
- resistive-dominant inner current sheet 1072k —Jx BxB .
- ambipolar-dominant outer current sheet : :
- advection-dominant inflow region [ Cvm'pn,/’ )

ni. -

1070 T S
Ambipolar diffusion causes plasma heating PR
=>outflow driven by gas-pressure gradient [ /
from the ambipolar layer

107%F d

Note: two-fluid treatment is necessary to L
quantitatively address the (ion-dominant) st o
outflow from resistive layer a.01 0.10 1.00 10.00




Petschek-like regime

color: current density

0.00000

Ambipolar diffusion uniform + enhanced in x < +2
Uniform resistivity



Even though the resistivity is uniform, the
localization of ambipolar diffusion causes
local thinning of the current sheet, leading
to Petschek-like fast reconnection

The “ambipolar layer” almost disappears.
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Conclusions

* Magnetic reconnection is playing important role in
physical process in various kinds of space and

astrophysical plasmas.

e |t still have fundamental unresolved issues:
— scale coupling
— multi-fluid effects

— particle acceleration

e Solar atmosphere is an unique lab to study it, and
collaboration with other field is essential



