Physical analogies between solar chromosphere and earth's ionosphere

Hiroaki Isobe (Kyoto University)

Acknowledgements: Y. Miyoshi, Y. Ogawa and participants of "Solar chromosphere and Earth's ionosphere" meeting.

Why chromosphere is important

- Intrinsically interesting
- Path of mass and energy to corona, solar wind, and thus heliosphere
- Origin of UV radiation that affects upper atmosphere of Earth
- Unique laboratory of weakly ionized plasma also relevant to molecular cloud, protoplanetary discs and ionosphere

Similarity of chromosphere and ionosphere

- Interface layer between tenuous, magnetically dominant region above and convecting layer below
- Coupling with by magnetic field and waves
- Gravitationally stratified
- Weakly ionized. Neutral/plasma interaction important

Temperature profile

• $T_n \sim T_i \sim T_e$ in solar atmosphere because of collisional relaxation.

Density profile

- Strong stratification: density drops many orders of magnitude.
- Weakly ionized (ionization fraction << 1).
- In ionosphere, Dominant ion species change as a function of height.
- In the sun, H~90%, He~10% (number density) and little others.

Collisionality

- Chromosphere is collisional. Neutrals and plasma is strongly coupled and behave as a single fluid, except in small (<~10km) scale.
- Lower ionosphere is strongly coupled, while upper ionosphere is nearly collisionless.

Collisional and cyclotron frequencies

- Collisional freq $v_{in,en}$ > cyclotron freq $\Omega_{i,e}$ means ion/electron is demagnetized by collision with neutrals.
- If $\Omega_i < v_{in}$ and $\Omega_e > v_{en}$, ion and electron behave differently, producing electric current.
- Such "dynamo effects" known in ionosphere, but not identified in chromosphere.

Common physical processes

 Precipitation of high energy particles during flare/ substorms

Common physical processes

- Magnetohydrodynamic waves
 - In ionosphere they come from magnetosphere (energy source is solar wind)
 - In chromosphere they come both above and below (energy source is photospheric convection)

Common physical processes

Sun

Waves from below

- Stratification causes amplitude growth (shock formation)
- Gravity wave important in Earth
- Sound wave (slow-mode shock) important in Sun
- ...why different?

Similar? solar wind and polar wind

Sun Earth

Phil Berardelli, Science NOW, 2008

Y. Ogawa, STEL Newsletter, 2005

Similar? Emerging flux and plasma bubbles

Emerging flux

"Bubble" in prominence (Berger et al. 2008)

Plasma bubble in Earth atmosphere (courtesy H. Fujiwara)

Magnetic Rayleigh-Taylor instability

Sun-Earth language barrier larger than that of Norway-Japan?

- Terrestrial people define plasma beta by (plasma pressure) / (magnetic pressure)
- Solar people define plasma beta by
 (plasma + neutral pressure) / (magnetic pressure)
 ...because plasma and neutrals behave almost as single fluid
- We need persevering conversation!

Conclusion

- Lots of similarity (and some differences) in solar chromosphere and Earth's ionosphere:
 - plasma parameters
 - physical processes
- Scandinavian countries and Japan have strong groups in both fields.
- International and interdisciplinary collaboration promising, but we need continuous conversation.

backup slides

X-ray and radio emission in flares

(Guedel-Benz relation, GB1993)

Jupiter aurora

Why 1-fluid MHD is OK in chromosphere

Balancing the Lorentz force and ion-neutral drag

$$v_{ni}\rho_n(V_n - V_i) \approx \frac{J \times B}{c}$$

$$V_n - V_i \approx \frac{B^2}{4\pi L v_{ni}\rho_n} \approx 100 \left(\frac{V_A}{10 \text{km/s}}\right)^2 \left(\frac{L}{100 \text{km}}\right)^{-1} \left(\frac{v_{ni}}{10^3 \text{Hz}}\right)^{-1} \text{cm/s}$$

Relative velocity is ~ 1 m/s in chromosphere, whereas chromosphere is dynamic and always moving around with V > 1km/s.

Except in small scales (such as high-frequency waves and magnetic reconnection), plasma and neutrals can be considered as single fluid.