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Abstract 

A numerical scheme for solving advection equations is presented. The scheme is derived from a rational interpolation 
function. Some properties of the scheme with respect to convex-concave preserving and monotone preserving are discussed. 
We find that the scheme is attractive in suppressing overshoots and undershoots even in the vicinities of discontinuity. The 
scheme can also be easily switched as the CIP (Cubic interpolated Pseudo-Particle) method to get a third-order accuracy 
in smooth region. Numbers of numerical tests are carried out to show the non-oscillatory and less diffusive nature of  the 
scheme. 
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1. Introduction 

As one of the most important physical processes in fluid dynamics, advection is conventionally described in 
terms of a differential equation as a first-order hyperbolic type like 

~f - - + u . ~ f = 0 ,  (1) 
Ot 

with f being the dependent variable and u the velocity. 
The CIP method, a sophisticated method for the advection equation, has been under development since 

the middle of the 1980s. It has been applied to simulations of various physical problems and proved to be 
well performing [ 1-4]. The rudimentary principle of the CIP, which makes the scheme quite different from 
other advection solvers, is to treat the spatial derivatives of the interpolation function, which serves as free 
parameters in the interpolating procedure, as dependent variables. These additional variables are then calculated 
by their governing equation derived by applying a differential operation to the advection equation with respect 
to spatial independent variables. Hence, the free parameters needed in interpolation are determined from the 
given differential equation rather than from combinations of the values at discretised grid knots as those, for 
example, done with the Akima or Cubic Bessel formula [5]. 

0010-4655/96/$15.00 (~) 1996 Elsevier Science B.V. All rights reserved 
SSDI 001 0-4655 ( 9 5 )  00124-7  



2 F. Xiao et aL/Computer Physics Communications 93 (1996) 1-12 

In practical implementation, an attractive advection scheme should be both less diffusive and oscillation free. 
Many high order schemes have been proposed to reduce the numerical diffusion. However, in the presence 
of discontinuity or breaking down of smoothness, one is likely to meet overshoots or undershoots by directly 
applying those high order methods. On the other hand, we often encounter situations where the property of 
positivity appears to be of most importance. Algorithms which can preserve the topological nature of data are of 
particular interest. Usually, as applications of a high order scheme, manipulations, such as numerical viscosity, 
are made to degrade the scheme to be of lower order in the presence of discontinuities to eliminate spurious 
oscillation. Some of these sort schemes are reviewed in [6]. 

In constructing a CIP-type scheme, the choice of interpolation function is of great importance, and some 
improvements can be expected by using some prospective interpolation functions. We can hope to construct 
schemes with some desired properties, like TVD, monotone or non-oscillatory, by making use of a proper 
function. 

In this paper, we present an algorithm for the advection equation by employing a rational function. The 
remarkable character of the scheme is convex-concave preserving and monotone preserving. It makes this 
method quite desirable for practical implementations where the break-down of positivity from numerically 
spurious oscillation tends to cause serious problems in calculations or simulated results. The scheme appears 
also less diffusive in sample calculations. 

In Section 2, the algorithm is presented and some related properties are discussed. Numbers of numerical 
tests are given in Section 3, and a brief conclusion follows in Section 4. 

2. The algorithm 

For given data f ( x l  ) , f ( x 2 )  . . . . .  f ( x i )  . . . . .  f (Ximax)  with xj < x2 < ' "  < xi < " - <  Ximax, we construct 
a piecewise interpolation function F i ( x )  to f ( x )  by limiting the number of free parameters to be 4 on each 
interval [ xi,  xi+l ]. 

The ith function piece F i ( x )  is made to satisfy the continuity condition 

Fi(xi) 2 f ( x i ) ,  Fi(Xi+l ) = f ( x i + l  ), i ~ 1 2, imax, (2) 
F ' ( x i )  di, F ' ( x i + l )  =di+l ,  ' "'" 

where {di}  are free parameters used to evaluate the derivatives of the interpolation function F ( x )  and can be 
determined by various formula. In the CIP method, {di}  are calculated from a governing relation derived from 
the original advection equation, and we will use the same concept in this paper. 

Our scheme is derived from a piecewise rational function in a form as 

E l ( x )  = g i ( x )  = f ( x i )  -k- A l i ( x  - x i )  + A 2 i ( x  - -  X i )  2 

1 q- Bi(x - -  X i )  (3) 

From condition (2),  one reads 

A l l  = di q- f i n i ,  
A2i ~ SiBi -k- ( Si - d i )A i  - I  , 

Bi = [ (S i  - d i ) / ( d i + l  - Si) - -  I]Ai - I  , 

where 

S~ = ( f i+~ - f ~ ) A i  - I  , 
c l f  

e l i=  ~ i" 
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w h e n  di <_ Si <_ di+l or di >_ Si 3> di+l is not satisfied, Bi ~ - A T  I in (3)  is observed, and computation will 
be broken as the denominator of  (3)  approaches zero at a point within [xi, x i ~ ] .  Thus, for implementation, 
we modify (3)  as 

f ( x i )  + A l i ( x  - xi)  + A 2 i ( x  -- x i )  2 + A 3 i ( x  -- Xi)  3 
Fi (x )  = (4) 

1 + a B i ( x  - xi) 

and 

A l l  = di + fio~Bi, 

A2i = SiotBi + ( Si - d i )Ai  - I  - A3iAi,  

A3i = [di - Si + ( d i + l  - S i ) ( 1  + o t B i A i ) ] A i  - 2 ,  ( 5 )  

Bi = [[(Si - di) / (  di+~ - S i )  I - l ] A i  - I  , 

o~ E [0, 1 ] is a switching parameter. The new term A 3 i ( x  - - x i )  3 is determined in such a way that A3i vanishes 
for (Si - d i ) / ( d i + j  - Si) >_ 0 with oL = 1 and recovers the coefficient of (x  - Xi) 3 term in a cubic interpolation 
function [ 1 ], i.e. A3i = ( d  i + di+l - 2Si )Ai  -2,  for a = 0. 

We write the one-dimensional form of the advection Eq. ( 1 ) as 

O_ff + u`9 f = 0. (6) 
`g t `g x 

The equation governing `gf/Ox can be derived directly from Eq. (6) as 

Ot(O~f(x ,  t) ) + u`9~(`9,f(x,  t) ) = - O , u ( x ,  t ) `9~ f (x ,  t ) ,  (7) 

where ,9, refers to `9/Ox and 0t to `9lOt. 
Usually, it is convenient to handle the right hand side of  (7) in non-advection phase like the treatment in the 

CIP which solves equations by time splitting into advection and non-advection phases. Thus then, in advection 
phase, Eq. (6)  and 

Ot( ̀ 9 , f (  x,  t) ) + uOx( ̀ gx f (x ,  t) ) = 0 (8)  

need to be dealt with. 
When f~ and `9,f~' are known for i = 1 . . . . .  i,,,,.,, with n denoting the time steps, coefficients A 1~, A2i, A3i 

and Bi can be calculated by (5) ,  and then both f~,+l and O,f~ +l may be predicted by shifting along the 
characteristics as 

f~+l = Fi(xi  - uAt )  = f~  + a l i ~  + a 2 i (  2 + A 3 i (  3 (9a) 
I + a B i ~  

and 

0,f~ '+1 =O, Fi( xi - uAt  ) 

= (Ai  + 2A2i~ + 3A3i(2) (1 + a B i ( ) - I  _ o tBi ( fn  + A l i (  + A 2 i (  2 + A3i(3) ( 1 + orBi t ) -2 ,  

(9b) 

where c = - u A t .  Eq. (9) is derived for u < 0. When u > 0, we need only take the places of  Ai and i + I by 
- -Ai- I  = x i - i  -- xi and i -  1 in foregoing expressions respectively. 

Next, let us state and prove some facts about algorithm (9) .  By keeping in mind that the scheme is a sort 
of  upwind, without losing generality, we limit our discussions to the case of  u <_ 0. 

Proposit ion 2.1. When the switching parameter ot is set zero, algorithm (9)  is identical to the CIP method. 
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Proof The proof is straightforward by eliminating the terms including a in (9)  and comparing the resulting 
expression with Eq. (3)  in Ref. [ 1 ]. [] 

From Proposition 2.1, we know that the CIP method is a particular case of  algorithm (9) .  By letting ot = 0, 
the scheme can be switched to the CIP of  the third-order in smooth region. Furthermore, one can recover the 
first-order upwind scheme by setting d n = d~+ z = S~' instead of  (9b) .  Algorithm (9)  provides us a flexible form 
for a class of  polynomial based schemes. 

Pertaining to the interpolation function itself, we have 

Lemma 2.1. Assuming a = i , the interpolation function defined with (3)  is retrieved from that defined with 
(4)  if the condition of  di <_ Si <_ di+l or di >_ Si >_ di+l is satisfied• 

Proof The proof is trivial because the coefficient A3i vanishes for the addressed condition. [] 

Lemma 2.2. Under the condition of  Lemma 2.1, we have F['(x) >_ 0 for d i < di+l and F['(x) <<_ 0 for 
di >_ di+l in every closed subinterval of  [ xi, xi+l ]. 

Proof With Lemma 2.1, by considering function F/(x)  defined with (3) ,  we easily arrive at 

Fi"  ( x ) = 
2(di+l -- S i ) 2 (  Si - di) 2( x - xi) 2 

[ (di+l - Si) (Xi+l -- X)  -~- ( S  i - di) (x - xi) ] 3" 

It states that F,! '(x) > 0 is always true for di < Si <_ di+l, and F/"(x)  ___ 0 for di >_ Si >_ di+l. [] 

We, for further discussion, note some concepts as 

Definition 2.1. The data { ( X i ,  f i ,  di), i = 1,2 . . . . .  imax} are said to be non-decreasing if f l  < f2 < " -  < f i m a x  

or non-concave if dt < Sl < d2 < $2 < d3 < " ' "  < dirnax-I ~ Simax-I _< dimax; or conversely they are said 
to be non-increasing if f] _> f2 _> " '"  _> fimax or non-convex if d] > St > d2 > $2 > d3 :> . - .  ~ dimax-I _> 
S i m a x - I  ~ d i m a x .  

Definition 2.2. Let a scheme for Eq. (6)  be in a form as 

fn+, = ~ l ( h t ,  A, fn, dn), 

and 

d "+l = ~R2(At, A, f" ,  dn), 

with f "  = {f,.~}, d n = {d~} and h = {Ai}. It is said to be convex-concave preserving if 

d~ +j < d ~  +] < . . . < d  n+j 
- -  - -  - -  ~ l m a x  

X n is always true for given non-concave data { ( i, f~,  d n) }, or 

• . .  dn+ i "i'4n+J -> d~ +j -> -->--,max 

for non-convex data {(xi, iT, dT)}; 
It is said to be monotone preserving if 

f7 +1 < f~+] < • < f n+l - -  - -  " "  - -  J i m a x  

is always true for given non-decreasing data, or 
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_ _  _ _  . . . _ _  f n +  I f ~ + l >  f ~ + l >  > .' imax 

for non-increasing data. 
The scheme is said to be non-oscillatory if there exists 

f~+l _ f~ 
0 <  < 1, i = 1 , 2  . . . . .  imax. 

- f ~ + l - f ~  - 

About the monotone and convex-concave preserving properties of a given scheme, we address an obvious 
fact as 

Lemma 2.3. A scheme for linear advection equation is monotone preserving for non-increasing data if it is 
monotone preserving for non-decreasing data; and similarly, a scheme is convex-concave preserving for non- 
concave data if it is convex-concave preserving for non-convex data. 

Proof The proof can be constructed by considering another data set generated as {(xi ,pi  = C - f i ) , i  = 
1,2 . . . . .  imax}, where {f i}  is the original profile and C E tR  a real constant. {pi} has opposite properties 
in monotonicity and convexity to {f i} ,  and a solution for {Pi} is equivalent to that for { f i}  in sense of the 
transformation. [] 

Now, with respect to algorithm (9) ,  we can give the following results. 

Proposition 2.2. Let a = 1, under the CFL condition, i.e. s x < 4,  scheme (9) is convex-concave preserving. 

Proof (i) For non-concave data {(xi, J~,d'~),i = 1,2 . . . . .  imax}, there exists d~' _< S~' _< d~'+l. By (9b) ,  { d i }  

are advanced as d~ '+l = F,'(xi + ~). From Lemma 2.2, and noticing that F'(xi) = d~ <_ Fi'(xi+l) = d~'+l, we 
find that F'(x)  reaches its minimum at x = xi and maximum at x = xi~l. Since the CFL condition can be 
interpreted as xi <_ xi + ~ <_ xi+l, we obtain the convex-concave preserving property as the following inequality: 

d 7 _< d7 +'  _< d~'+,. 

(ii) For non-convex data, we get the result directly by recalling Lemma 2.3. [] 

Proposition 2.3. Let o~ = 1, under the CFL condition, scheme (9) is non-oscillatory if the given data 
{ (xi, f~', d~ ) } satisfies anyone of the following: 
• 0 <_ d~ <_ S~ _< d~+ I (non-decreasing and non-concave), 
• d~ >_ S~ >_ d~+ I _> 0 (non-decreasing and non-convex), 
• d~ _< S~ _< d~+ l _< 0 (non-increasing and non-concave), 
• 0 > d~ _> S~ > d~+ I (non-increasing and non-convex). 

Proof The situation of  S~ = 0 is trivial. We only consider that of S~' 4 0 .  From Lemma 2.1 and (9) ,  we have 

1 
f~+, _ f n  (1 +Bisc)S~Ai (d~+Al i sc2)  ?i 

1 [dn~_~_snni~2 ~.. (an -dn) ] 
= (1 + B~lS~Ai X~ ~2 

(i) For the case of non-decreasing and non-concave data (0 < d~ < S~' _< d~+t), we know that S~ -d~ '  >_ 0, 
and then by CFL condition, get ( S~ - d n ) ( 2 / A i  < ( S n - d n ) ~ .  Therefore, 

f . + ,  _ f .  



1 

(l  + 8;~:)sTa~ 

meanwhile 
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Is,.%(1 + B;~)I  = ~ < l, 
A i - -  

d~(1 - ~:/a;)~ + ( l  + a ;B i ) sT(2 /a ;  
( ~ + Bi~)S~'a~ 

From d~ _> 0 and CFL condition, we get 

I + BiAi 
r i  ~ - -  ( ( / A i )  2- 

1 + Bi~ 

By (5) ,  one knows that 1 + B i A i  = ](S~' - d'Z)/(d'I+ I - $7) ] > 0 and 1 + B i (  = ](S~' - dT) / (d ' I+  , - S ' I ) [ ( / A i +  
( 1 - ( / A i )  > O, and consequently ri _> 0. 
(ii) For the case of  non-decreasing and non-convex data (d~' _> S~' > d~+~ _> 0) ,  by S~' - d~' _< 0 and CFL 
condition, we get (S'~ - d ' ~ ) ( 2 / A i  > (S 7 - d~')s ¢, and then 

l ( 
~i > [s~'~(l + B ~ ) ]  = - -  > 0. 

( 1 + B i ( ) S ~ A i  Ai -- 

On the other hand, ?i can be rewritten as 

d T + l t S : / A  (d~+ I - S~)(1 - - ( / A i ) 2  
? i=  l + Sn , 7 /  , -  1 ) +  (1 + B i ( ) S  n 

Noticing d~' _> S~' _> d~'+l > 0 and the CFL condition as well, one finds that the last two terms in the above 
expression are less than 0, and then ?i < 1; 
(iii) For non-increasing data we have similar inequalities, or we can complete the proof  by Lemma 2.3. [] 

From Proposition 2.3, 
within the cell. Thus, no 
a s  

it is obvious that (9)  leads a solution valued between the maximum and minimum 
new extremes will be created. As a corollary of  Proposition 2.3, we give another fact 

Propos i t i on  2.4. Let ot = 1, under the CFL condition, scheme (9) is monotone preserving if the given data is 
non-concave or non-convex. 

Above discussions are undertaken with respect to the interval [ Xg, xg+ ~ ], and we reach results in a sense of  
piecewise. For making use of  the algorithm, one needs to determine {di} in advance. One of  the choices can 
be as d o = ~ ,  i = 1,2 . . . . .  imax, obviously, the {d °} meet the condition of d o < ~ < dO+, or d o _> ~ > d°+,. 
As calculation proceeds, the data is adapted to fit a rational function. Due to the properties of  convex-concave 
preserving, a new extremum is suppressed. We can expect a non-oscillatory profile with the scheme. 

Among existing schemes, some are also constructed by interpolating procedures. The most representative ones 
are the MUSCL (monotonic upwind scheme for conservation laws) scheme of Van Leer [7,8] and the PPM 
(piecewise-parabolic method) scheme of Colella and Woodward [9] .  In these scheme, profiles of  dependent 
variable in control volume is computed by interpolation, and the numerical flux at the center of  zones can 
be determined, subject to certain monotonicity constrains. A piecewise linear interpolation formulation is used 
in the MUSCL method, while in the PPM scheme, which is a higher-order extension of MUSCL algorithm, 
a parabolic function is employed in each zone. To eliminate oscillation near great gradients, extra steps are 
introduced to enforce the monotonicity conditions in these schemes. The modifications made on the variable 
may cause discontinuities at the edges of  control volume. In our present scheme, no modification at all is needed 
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after the interpolation procedure. The osciilationless results of the present scheme stem from the property of 
the rational function as discussed in Section 2. What we should mention as another advantage of the present 
scheme which needs no explicit calculation for flux correction is that it can be more easily extended into a full 
multi-dimensional form. 

We compared the performances of the MUSCL, PPM and algorithm (9) in solving the linear propagation 
of a profile which includes both large gradient and a sharp comer. Fig. 1 shows results of (a) the MUSCL 
scheme, (b) the PPM scheme and (c) algorithm (9) after 440 steps of calculation with CFL = 0.2. Algorithm 
(9) and the PPM scheme produce more accurate numerical solutions compared with the MUSCL scheme. 
The PPM method, which gives a good representation of the large gradient, however, makes a flattened plateau 
around the sharp corner, while the present scheme represents the sharp comer satisfactorily. It is observed that 
by introducing the derivatives of dependent variable in the computational process, the present scheme is more 
compact than MUSCL and PPM methods which cover at least three grid nodes in constructing interpolation 
function. This makes the scheme to give a better fitting around sharp corner turning. 

In the next section, we will give out some numerical tests. The non-oscillatory and less diffusive property is 
stressed even in the case with extremely irregular initial data. 

3. Numerical tests 

In this section, we present some sample calculations to test algorithm (9) in a completely rational sense. We 
refer to the scheme (9) with te = 1 as 'completely rational'. 

Example 3.1. We solve one-dimensional linear initial problems as 

8f  8 f  
a t  + 7x =0, (t ,x) c [ 0 , ~ )  × ( - ~ , + ~ ) ,  

f (x ,O) = f ° (x ) ,  x E (-oo,+oo),  

with the following initial conditions: 
(i) 

f ° ( x )  = sinrr(x + 1), 

(ii) 

(iii) 

1 l, Ixl_< ~, 
i f ( x )  = O, others, 

- x  sin(3/2zrx 2), 

fO(x ) = J sin(2~'x)l, 
2x - 1 - sin(27rx)/6, 

f° (x  +2 ) .  

-1  _ ( x < - 1 / 3 ,  
Ixl < I /3 ,  
l / 3 < x < l ,  

Equally spaced grid points of Ax = 0.02 and a CFL number of 0.2 are used. 
The initial condition (i) is used to demonstrate the accuracy of the scheme in smooth region. For comparison, 

we include also the result of the first order upwind scheme in Fig. 2. Scheme (9) appears to be highly accurate 
when applied to smooth data, and no noticeable errors in amplitude are observed. The first order upwind 
scheme, however, produced a diffused profile due to its low order in accuracy. 
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b 

q k  

(b) !j 
I 

P 

• 4 

(c) 

Fig. I. Linear propagation of a profile including large gradient and sharp comer after 440 time steps (CFL = 0.2) with (a) MUSCL 
scheme of Van Leer, (b) PPM scheme of Colella and Woodward and (c) algorithm (9). 

Fig. 3 illustrates the result from condition (ii).  We get a non-oscillation solution by directly using (9).  In 
common, high order schemes tend to generate spurious oscillations in the presence of  discontinuities or steep 
gradients, and many modern high resolution scheme use well-specified artificial viscosity to add dissipation 
near local discontinuities. We fulfill the same task by employing a proper interpolation function. 

With condition (iii), we extend the scheme to an extreme case of  strong discontinuities, yet the result 
depicted in Fig. 4 shows a resolution competitive to many prevalent schemes mentioned in Refs. [ 10] and 
[11] .  
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- -  Exact Sol. 
~ . . . .  Eq.(9) 

/ _ _ _  \ .... 
/ *** . . . . .  ,% -~ 500 time steps 

.o* -°Oo ~ CFL=0.2 ° 

°°O°O° °ooOOO 

1000 time steps 

CFL=0.2 
- -  Exact Sol. 

. . . .  Eq.(9) 

Fig. 2. Fig. 3. 

Fig. 2. Linear propagation of a sinusoidal wave after 500 time steps (u A t /  z~ x = 0.2) with the first-order upwind scheme and the 
algorithm (9).  

Fig. 3. Linear propagation of a square wave after 1000 time steps (u/~ t / A  x = 0.2) with the algorithm (9).  

Example  3.2. We now turn to a set of  two coupled differential equations as 

z~- +-~-x-L-7:r, 
aT,. T 7" -~-  = f - -  s .  

It is a two phase model of the dynamic response of  porous media and packed beds systems to any inlet 
temperature. Tf and T.,. are dimensionless temperature of  fluid and solid respectively, z the heat capacity ratio of  
fluid to solid, t dimensionless time and x dimensionless spatial coordinate. Interested readers are recommended 
to refer to [12] and references therein for physical background of  the problem. 

For a boundary forcing problem, with -cx) < t < c~ and Tf = (0, t) = g ( t ) ,  one ends up with a solution as 

O(3 
/ *  

T f ( x ,  t)  = e - " g (  t - zx )  + e - ~ x  I/2 / ' r - ] / Z e - r l l  [2(XT)] /2]g( t  -- ZX T)MT 

0 

and 

(DO 

e - x  / e - ~ l o [ 2 ( x ' r ) I / 2 ] g ( t  - zx  - 7")d7" L(x, t )  
. 1 "  

0 

where I0 and I] are the 0th and l th order modified Bessel function of  the first kind. 
We calculate the numerical solution to the problem by making use of  the first-order upwind difference 

scheme, Lax-Wendroff  scheme and algorithm (9).  The time varying function is specified as g ( t )  = cos(~Trt) 
and the heat capacity ratio z = 9. A uniform grid system with Ax = 0.025 is used. The results at t = 31.5 are 
depicted in Fig. 5. 
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/ 

5 0 0  t i m e  s t e p s  

CFL--~.2 
Exact Sol. 

. . . .  Eq.(9) 

Fig. 4. Linear propagation of a profile given by the initial condition (iii) of Example 3.1 after 500 time steps ( u/~ t~/X x = 0.2) with the 
algorithm (9). 

As a process of propagating and damping boundary perturbation, this sample problem is suitable for testing 
the errors in amplitude and phase speed for a given advection scheme. The upwind scheme, as expected, gives 
a heavily diffused solution (Fig. 5a), and few or no variations are observed in the area farther than 3 wave 
lengths from the forcing source. On the other hand, the Lax-Wendroff scheme appears less encouraging in 
phase speed. From Fig. 5b, we find an increasing error in phase speed as the distance from forcing source 
increases, and somewhere the solution takes on a nearly opposite phase compared with the exact one. 

Fig. 5c shows the result from (9).  No significant errors have been observed in both amplitude and phase 
speed. 

Example 3.3. As an application to non-linear problem, we turn to the one-dimensional shock tube problem 
which was originally used by G.A. Sod [ 13], 

Ow Of (w)  
- - +  - -  =0,  
Ot Ox 

w(x ,0 )  = w°(x), 

( t , x )  C [ 0 , ~ )  x ( - c ~ , + o o ) ,  

x E ( - o o ,  +co ) ,  

with the following discontinuous initial conditions: 

wO(x) = [ wL, x < 0 . 5 ,  
/ WR, X > 0.5. 

(10) 

Here w = (u, pu, pE)  T, f ( w )  = (pu, p + pu 2, U (p + E)  ) T; p is the density, u the velocity, p the pressure, and 
E the total energy. 

For a polytropic gas, there is a relation p = ( - y -  1 ) ( E -  lpu2) .  A numerical test was carried out with 
(pt. ,pt. ,UL) = (1 ,1 ,0)  and (pR,RR,UR) = (0.1,0.125,0).  AS done in [1],  Eq. (10) was rewritten in a non- 
conservative form and computational process is divided into advective phase and non-advective phase in terms 
of (p,  u, E).  An artificial viscosity based on the Rankine-Hugonoit relation in a form like Eq. (29) in [1 ] was 
used. 
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-I.0 
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1.£ 

0.{ 

-1.0 

0 .0  

1.0 

0 .0  

-1.0 
I 

0 .0  

(a) - -  E x a c t  Sol.  

~ . . . .  First Order Upwind 

• 

o~ ,I0 ,'5 ~ ~5 
(b) -- Exact Sol. 

• el, . 

(c) - -  Exact Sol. 

I i L 
05 ,o  1'~ 20 ~'5 

Fig. 5. Dynamic response of a two phase model to a periodical variation of inlet temperature at t = 31.5 (a) with the first upwind scheme, 
(b) with the Lax-Wendroff scheme, (c) with the algorithm (9). 
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Fig. 6. Density output at t - 0.277 of the one-dimensional shock tube problem with the algorithm (9). 

The result  at t = 0 .277 is depic ted  in Fig. 6. We can see, with a proper  artificial viscosi ty  as the CIP  method,  

that the present  scheme demonst ra tes  abil i ty in captur ing both discont inui ty  and shock wave with a sat isfactory 

accuracy. Compared  with  the CIP, the scheme (9)  tends to produce  a less f luctuat ing solution,  even though it 

appears more  dif fus ive  in some senses. 
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4. Conclusion 

We developed a scheme for solving the advection equation by making use of a rational function. Numerical 
tests and theoretical discussions show that the scheme has a high accuracy in smooth region and no oscillation 
appears in the vicinities of discontinuities or steep gradients. These properties are commonly desirable for all 
high resolution schemes. Unlike other high-order schemes, our scheme suppresses spurious oscillation by using 
a convex-concave preserving interpolation function instead of the flux limiters used in many conventional high 
resolution schemes. The scheme can reach a high order accuracy in smooth region and produce a 'proper' 
dissipation in the neighborhood of discontinuity automatically to eliminate numerical oscillation. It is also 
noted that the CIP method can be easily recovered from the present scheme. Furthermore, the extensions to 
multi-dimensional version of the scheme is straightforward. Works about 2 and 3 dimensions will be presented 
in a separate paper. 
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