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1. Introduction

The recent development of electronic computers have enabled us to solve
nonlinear, nonsteady hydrodynamic or magnetohydrodynamic equations numerically.
However, at present there does not exist such an almighty numerical scheme for
solving these partial differential equationé, as the Runge-Kutta scheme for the
ordinary differential equations. Therefore in applicating numerical (magneto-)
hydrodynamics to solar active phenomena, one is faced with many problems, e.g.
selection of scheme, numerical instability, boundary condition and etc. Within a
framework of the finite difference scheme, we first give a brief summary of these
problems appearing in numerical (magneto-) hydrodynamics (Section 2). In spite of
the immaturity of numerical (magneto-) hydrodynamics, applications to solar active
phenomena have been done increasingly during the recent ten years and have developed
solar physics. We next review the recent development of numerical solar (magneto-)
hydrodynamics, especially applications to shock waves and jet phenomena (Section 3).
Finally the limitations and the possibilities of numerical solar (magneto-)

hydrodynamics in future are briefly discussed (Section 4).
2. Numerical (Magneto-) Hydrodynamics

2.1. Definition

We will define 'Numerical (Magneto-) Hydrodynamics' as the numerical
simulation of (magneto-) hydro&ynamical phenomena which is represented by the
equations of conservations of mass, momentum, energy and magnetic flux, including
the approximations of the incompressibility, the specified temperature and the

nonmagnetic hydrodynamics.

2.2. Numerical Scheme
The schemes used in Numerical (Magneto-) Hydrodynamics are classified by

their various characters, i.e. whether the grid is referred to space (Euler) or



mass (Lagrange); whether the space derivative is the past (explicit) &5 the present
(implicit), that is, in the explicit case %% = %% ?+1- u? = (u2+1- u?_l)/
(2 Ax/ 4t), while in the implicit case u] - u} = (u},1- ul')/(2 Ax/ At);
what method is used to solve the original partial differential equations numerically,
e.g. the finite difference method, the characteristic method and the finite element

method. The most frequently used method is the finite difference method (FDM).

This method is based on the direct approximations of the original partial
differential equations to the difference equations, i.e. the finite difference

approximations (Richtmyer and Morton, 1967). The characteristic method (CM) is

also frequently used. In this method, the characteristic differential equations
derived from the original partial differential equations are solved numerically
(Hoskin, 1964; Richardson, 1964; Sauerwein, 1966). The finite element method (FEM)

has not yet been used in solar physics (and probably in astrophysics) except for
one case (Sakurai, 1976). This method is based on a variational teqnique known as
Ritz's method (Strang and Fix, 1973). Although there are some methods other than
these (e.g. Beam Scheme; see also Leibacher and Stein, 1975), almost all the

methods used in solar physics can be classified into these three (see Table I).

The finite difference methods are also classified into many different schemes,
i.e. the Lax-Wendroff (LW) scheme (Richther and Morton, 1967), modified Lax-
Wendroff (MLW) scheme (Rubin and Burstein, 1967), leapfrog scheme (see Roche, 1972),
Flux Corrected Transport (FCT) scheme (Boris and Book, 1973; Book, Boris and Hain,
1975; Boris and Book, 1976) and etc. These schemes belong to the explicit and

Eulerian ones in the finite difference methods.

2.3. Problems in Numerical Simulations

First of all, it must be emphasized that there is no almighty scheme, while
there are many numerical schemes as shown in Section 2.2. Therefore we are faced
with the problem of the selection of the scheme. The usual selection rule is as
follows; (1) accuracy, (2) stability, (3) small computational time and (4) easiness
of programing. The finite difference method satisfies this selection rule to a
certain extent and has been used freguently. Therefore in later part 6f this section

we will discuss about the problems appearing in the finite difference methods

The most serious problem in the finite difference methods is that of the
numerical instability. For egmple, in the Lax-Wendroff type scheme which is most -
frequently used, the numerical oscillations appears around the shock and the
contact discontinuity. In some circumstances the amplitudes of these oscillations

grow without limit, that is, the instability occurs. In the case of the shock



wave these oscillations can be removed by an introduction of the artificial viscosity
(Richtmyer and Morton, 1967), but the oscillations around the contact discontinuity
cannot be removed. FCT scheme significantly improved these behavors around the

shock and the contact discontinuity (Boris and Book, 1973; Weber, 1978). As for

the more detailed comparison of many FDM schemes, the reader is reffered to the

review paper by Sod (1978).

The numerical instability is also produced by the reflection of the wave at
the open boundary. Even if the instability does not occur, the reflection wave
may affect the inner region of the numerical simulation. Therefore the boundary

condition is very important (even for the characteristic method and the finite

element method).

Mathematically a part of this problem is reduced to the mixed initial and
boundary value problem. That is, the boundary condition must be compatible with
the inner region. In the case of the one dimensional hyperbolic partial differential
equations (e.g. compressible, inviscid and adiabatic MHD equations), this problem
can be solved by the characteristic relations (Courant and Hilbert, 1962) . Chu and
Sereny (1974) applied these relations to the finite difference method. Nakagawa
and Steinolfson (1976) introduced these relations to astrophysics and called them
the compatibility relations. In the case of the two or three dimensional hyperbolic
partial differential equations, however, the mixed problem has not yet been resolved
mathematically (Nogi, 1979), although the characteristic relations can be formally
constructed (e.g. Jeffrey and Taniuti, 1964; Richardson, 1964; Sauerwein, 1966;
Shibata, 1979). The difficulty in multi-dimensional problem is originated from
the fact that the chracteristic curve becomes the characteristic surface. From
the same reason and the complexity of the formal characteristic relations, the
multi-dimensional characteristic method (Richardson, 1964; Sauerwein, 1966) is

not frequently used.

It should be noted that even the compatibility relations in one dimension
cannot cmpletely remove the reflection of the-wave at the open boundary. Hedstrom
(1979) investigated a nonreflecting boundary condition for one dimensional
hyperbolic equations. Rudy and Strikwerda (1980) also studied it for Navier-

Stokes equations (see also Sundstrom, 1975; Orlansky, 1976; Gustafsson and

Kreiss, 1979).

3. Applications to Solar Active Phenomena
In spite of the immaturity of Numerical (Magneto-) Hydrodynamics as shown
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in the previous section, many simulations have been performed about solar active
phenomena during the recent ten years. These simulations can be classified into
following categories;

(1) sunspot and related phenomena---interaction between magnetic field and

convection (2MHD) etc.

(2) acoustic waves and shocks in the photosphere and the chromosphere (1HD)

(3) jet phenomena---spicules and surges (1F?D)

(4) flare---thermal evolution (1HD) etc. »

(5) coronal disturbances---MHD waves in the corona (2MHD) etc.

(6) others
(Some contents of them are summarized in Table I. Note that Table I does not include
the numerical simulations of the dynamical phenomena associated with the solar wind
because too many simulations have been performed in this field.) Since there is no
space to review the whole contents of these simulations, we will confine ourselves

to categories (2) and (3) in the following subsections.

3.1. Acoustic Waves and Shocks in the Photosphere and the Chromosphere

Although the title of this subsection does not seem to be related to active
phenomena, the waves and the shocks are fundamentally important for understanding
of the physics of active phenomena (see Section 3.2). Therefore we will present

a simple review of the simulations in this category.

The first numerical simulation in this category was performed by Stein and
Schwartz (1972). They computed the one dimensional vertical propagation of the
single acoustic pulse including effects of radiation and ionization approximately,
and compared the results with weak shock theory. Figure 1 shows a typical example
of the acoustic wave propagation in the photosphere and the chromosphere, which
is reproduced from the paper of Stein and Schwartz (1972). This figure includes
almost all the fundamental physics of one dimensional propagation of acoustic
waves and shocks in a stratified atmosphere. First, one sees in this figure that
there is the formation of the shock wave from the finite amplitude acoustic wave.
This is the well-known nonlinear effect. Second, the growth of the ampl%Eude of
the acoustic waves and shocks is found from this figure. This is also thé well-
known property of acoustic wave propagation in a gravitationally stratified
isothermal atmosphere. (Note that in the solar photosphere and the chromosphere
the temperature can be assumed to be constant within an error of factor two.)
Third, the most interesting result in Figure 1 is the matter ejection by the
Passage of the shock wave in the upper chromosphere. Since the code used by Stein

and Schwartz is the Lagrangian code, one will see in this figure that the matter
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which is initially located at the height 760

S A S—
of about 2000 km is ejected by the shock - s _
(5]
wave up to the height of more than 5000 § —
R i
km. This matter ejection is fundamentally Yy
. EAE—— e —
the same as the spicule model of Suematsu, Pl e il
L. L = zsn%ﬁ
Shibata, Nishikawa and Kitai (1980). g ::;5’=;=======_
. . . . B e~ =
Finally, there is another interesting > BE— v+ 50 sec
thing in this figure, i.e. a standing “om B CC R e
wave wake left behind the propagating HEIGHT (km)
acoustic wave (Lamb, 1932), which oscillates
at the acoustic cut off frequency (1/1; = Fig. 1. Typical example of the
c/(4mH) & 1/200 s-l, where ¢ is the sound acoustic wave propagation in the
velocity and H is the scale height). This solar atmosphere, reproduced
is due to the dispersive effect of a from Stein and Schwartz (1972).

gravitationally stratified atmosphere

"(i.e. the dispersion relation for an

infinitesimal amplitude wave is that w'= &lca._._ w,’_' , where w.,:% ). This standing
wave wake also becomes the shock wave at greater heights because of the nonlinear
effect, and this recurrent shock waves produce the recurrent matter ejections.

These results are also shown in the spicule model of Suematsu et al. (1980).

After the computations of Stein and Schwartz (1972, 1973), many simulations
have been performed in relation to the acoustic wave propagation in the solar
atmosphere, improving the numerical scheme and the treatment of the radiation
process (Kneer and Nakagawa, 1976; Ulmschneider et al., 1977; Kalkofen and
Ulmschneider, 1977; Ulmschneider and Kalkofen, 1977; Hammer and Ulmschneider, 1978;
Ulmschneider et al., 1978). However, the fundamental physics of the acoustic wave
(and shock) propagation in the chromosphere is not significantly altered by these
improvements because the radiative relaxation time is very large (2 100 sec) in

this region (e.g. Giovanelli, 1978).

3.2. Jet Phenomena (Spicules and Surges)
Until quite recently, there was no time dependent jet model which agrees well
with observations, although some simulations have been performed in order to account

for surges (Altschuler et al., 1968) and spicules (Bessey and Kuperus, 1970).

Recently, however, the numerical simulations of the jet phenomena significantly
developed. Steinolfson et al. (1979) presented the time dependent surge models for

the first time, by performing one dimensional hydrodynamic simulations on the



o)

~
assumption of adiabtic motion (Figure 2). Lolt

t=15 minutes

In their models surges are constructed by

Level at 2%

the pressure gradient force which is the
Rase Density

consequence of a sudden increase in ' 107 Lis~a 7
pressure at the top of the chromosphere.

On the other hand, Suematsu et al. (1980) 1010

t=)2 minutes

presented the nonsteady spicule model 109 -

for the first time, by using the similar 1ot!

Contact
Surface

method and assumptions to those of
Steinolfson et al. (1979). In Suematsu

t=9 minutes

DENSITY (cm™’)

-
-
-
-~ -
-~
.
e .

et al.'s model, as described in Section

3.1, the jets are produced by the shock

wave which is originated from a sudden t=6 minutes

appearance of the bright point in the - TTe=ol 77T
photosphere or the low chromosphere. | N 77
Therefore formation mechanism of the

jet in the spicule model of Suematsu et

al. (1980) is essentially different from

that in the surge model of Steinolfson o v 2z 3 45 e

et al. (1979). Shibata et al. (1980)
paid attention to this difference and Fig. 2. Surge model of

HEIGHT ABOVE BASI (10A km)

computed various jet models whose roots Steinolfson et al. (1979)

) —
§‘ 2400 km
A X
A X0
S ~\
8
SEEEE?E%&\‘_______ 300
§-\\ \—\“ 240
N -180
\\\\ §
. "] =120

- 80 sec

ho = 1050 km 1200
PPy =5

1500

Fig. 3. Various jet models whose roots are located at various heights

(ho) in the chromosphere. The figures show the density.



(bright points or explosions) are
located at various heights in the himax (10% km)
5

chromosphere, by performing one T
dimensional hydrodynamic simulations. o1

The results are summarized as follows.

The jets can be generally classified ar
into two types. If the sudden pressure
enhancements (bright points or

explosions) occur below the middle
chromosphere, the jets are constructed (o)

p ) . . \ / ©
by the shock wave. Otherwise the jets ? /
are constructed by the pressure 2} 3

\ o
\
. 0 \
gradient force. 10 \
5 \
\
\ 0

. 0,
Figure 3 shows the example of the 1}k ° oL 0/ -
3\\\ \\\l~__o—”/.o

~simulation results of Shibata et al. ° o \
(1980). The ho is the height of the \o&o/o,'

base of the model atmosphere, which 0 ) 1 1

. _ 0 500 1000 1500 2000
is measured from T%OOO = 1. The p/p, ho(km)

is the strength of the pressure

increase at hO' From this figure Fig. 4. Maximum heights of various jet

we see that there are two contact models. The dashed curve denotes the
surfaces in the case of h0 = 1050 critical heights (hc) which separates

km. The lower contact surface is two types of jet.

ejected by the pressure gradient

force, and the upper one is ejected

by the shock wave. Since the upper contact surface corresponds to the top of the
Jet, it can be said that the jets in this type are produced by the shock wave.

On the other hand, in the case of h0 ='1500 km there can be seen only one contact
surface, which is ejected by the pressure gradient force. The critical height (hc)’
which separates two types, is about 1400 km for p/p0 = 5. Figure 4 shows the
maximum height of the jet as a function of h0 for p/p0 =3, 5, 10 and 30. It should
be noted that the local minimum (dashed 1line) corresponds to the critical height,
i.e. in the right hand side of the dashed line the jets are produced by the pressure
gradient force, and in the left hand side the jets are produced by the shock wave.
The behavior of hmax curve can be qualitatively understood as follows. For h0:> hc’
the jet materials are accelerated by the pressure gradient force per unit mass

( 5{ = —L2p - 3, ) near the base. Since the density ( £ ) decreases with ho,

P 22
increases with ho. Hence hmax increases with hO' For h0<: hc’ the jet matters



are accelerated by the shock wave. The strength of the shock wave decreases with ho
for fixed p/po, because the growth of the shock wave decreases with decreasing the
region of the shock propagation in the chromosphere (i.e. htr- ho decreases with ho,
where htr is the height of transition region). The hmax decreases with decreasing
the shock strength. Thus hmax decreases with increasing ho. It must be emphasized
that the critical height ranges from 1000 km to 1500 km for 3 £ p/po < 30. Hence,

it is concluded that if the bright point (or explosion) occurs below 1000 km (middle
chromosphere) the jets are constructed by the shock wave. This means that small
surges associated with Ellerman bombs (Bruzek, 1974) are produced by the shock

wave, because Ellerman bombs take place in the low chromosphere (Roy and Leparékas,

1973).

Finally we will mention that these two types of jet can be understood by the

simple hydrodynamical principle. Figure 5 (a) and (b) represents the schematic
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Fig. 5. Schematic diagram of the propagation of the contact surface and the
shock wave for both types ((a) and (b)) and the idealized model of the

initial discontinuity for both types ((c) and (d)).



diagram of the propagation of the contact surface and the shock wave for both types.
An essential hydrodynamical structure of the jet in Figure 5 (a) is the same as that
of the shock tube (Figure 5 (c)) if the gravity is neglected. On the other hand in
the case of Figure 5 (b) the shock wave which has propagated through the chromo-
sphere plays an important role for the formation of jet, and the final ejection

of matter is determined from the collision of the shock wave with the chromosphere-
corona interface (a kind of contact surface) as has been already pointed out by
Osterbrock in 1961 (see Figure 5 (d)). Although the simulations are highly nonlinear
and complex, the initial velocity of the shock propagation and the jet (contact
surface) can be quantitatively explained by the idealized model of initial

discontinuity in Figure 5 (c¢) and (d) (Shibata et al., 1980).

4. Prospects for Numerical Solar (Magneto-) Hydrodynamics

We will comment on the future possibility of numerical solar MHD from the view
point of the computer's capacity. For example, let us consider whether or not 3MHD
simulations o? surges with similar method to that of Shibata et al. (1980) are
possible. Since 1HD simulations (for the case of 200 grid points and 4000-8000 time
steps) required 1-2 min by using Facom M200 at the Data Processing Center of Kyoto
University, which is probably one of the most rapid cmputers in the world, 3MHD
simulations (200 X 200 X 200 x factor) require more than 4 X 104 min (2670hr). It is
apparent that 3MHD simulations of surges are impossible at present and even in the
near future. (These 3MHD simulations are also inhibited by the storage capacity
of the computer.) However 2MHD simulations (2 200 min) are not impossible. (The
intrinsic difficulty in the numerical solar MHD comes from the smallness of the
scale height H in the photosphere and the chromosphere, e.g. H = 150 km at the
level of T = 5000 K. As numerical computations require that Az (grid size) S H/10

because of accuracy and stability, the vertical grid number becomes very large.)
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