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Abstract: Recent development of numerical simulations of magnetic re-
connection and solar flares is reviewed with emphasis on the numerical
modeling of various evidence of reconnection in flares that are discovered
by Yohkoh X-ray observations.

1. Introduction

Solar flares are explosions occurring in the solar atmosphere, releasing a
huge amount of magnetic energy 102° — 1032 erg in a relatively short time
scale 102 — 103 sec. Flares have spatial scales 104 —10° km, and emit almost
all electromagnetic spectrum from radio waves to gamma rays. The energy
release mechanism of solar flares has been one of the most challenging
subjects in solar physics and plasma astrophysics in the latter half of this
century.

What is the basic difficulty to understand solar flares? This is easily
understood if we calculate the magnetic diffusion time (or Ohmic dissipa-
tion time) of the solar coronal magnetic loop with a spatial scale L and
temperature T on the basis of the classical Spitzer conductivity;

L2 L T \3/
D e 1014(109cm)2(106K)3 " sec

This is nearly 3 million years (!), much longer than the observed time scale
of solar flares. Hence the simple current dissipation mechanism cannot work
for solar flares. Another way to see the difficulty is to calculate magnetic
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Reynolds number R,;

t V4L
=D _ A% 1081,

R, =
ta Nspitzer

where t 4 is the Alfven time

L L B \- /
ta=y = 10(109cm> <10G) 1(109:m‘3)1 " sec

In general, R,, > 1 in astrophysical plasmas so that it is very difficult
to dissipate magnetic energy in a short time scale (~ t4). Nevertheless,
explosive energy release similar to solar flares often occur in astrophysical
objects in a time scale comparable to Alfven time (10 — 100t4).

In order to overcome this difficulty, the theory of magnetic reconnec-
tion connecting microscopic physics (resistivity) and macroscopic dynamics
(flow) has been proposed (Giovanelli 1947) and developed by Sweet (1958),
Parker (1957), Petschek (1964) and others. Magnetic reconnection mecha-
nism has been applied also to geomagnetic aurora-substorms by Dungey
(1961) and disruption of magnetically confined fusion plasma (e.g., see
Biskamp 1993). From late-70’s, new era of reconnection study has begun;
i.e., numerical simulations of reconnection have started, which greatly con-
tributed to the development of not only reconnection theory but also re-
alistic modeling of solar flares, geomagnetic substorms, and disruption of
confined fusion plasma. In spite of the progress of both analytical and nu-
merical studies (e.g., Forbes and Priest 1987, Biskamp 1993, Tajima and
Shibata 1997), the magnetic reconnection theory has still not yet been es-
tablished. The enormous gap between tp and ¢4 is still a big obstacle for
numerical simulations, laboratory experiment, and analytic theories.

In this article, we review basic reconnection theory, recent development
of numerical simulations of reconnection, and new observations and numer-
ical modeling of solar flares based on the reconnection model.

2. Basic Reconnection Theory

Sweet (1958) and Parker (1957) developed a simple theory of magnetic re-
connection, taking into account of the effect of flow. This is now called
Sweet-Parker model. In this model, the plasma inflow with a speed of
V; drives the reconnection in the current sheet with a length L. Since
the magnetic energy is converted to plasma outflow, the speed of outflow
(reconnection jet) becomes comparable to Alfven speed Vj4 just outside
the current sheet. The time scale of reconnection (and energy release) is
tsp~L/V; ~ Rm1/2t,4 ~ 10%¢ 4 when applied to solar flares, which is much
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faster than simple magnetic diffusion (tp ~ Rpmta) but still much slower
than the observed time scale of solar flares (10 — 100t 4).

Petschek (1964) proposed a remarkable idea that if the effect of slow
mode MHD shock (or wave) is considered, it is possible to construct fast
reconnection model. Namely, the slow shock enables the conversion of mag-
netic energy to plasma kinetic and internal energies, and the magnetic
reconnection occurs only in a very small localized region (called duffu-
sion region) where the Sweet-Parker model holds locally. The speed of
outflow (reconnection jet) is again Vj4, while the inflow speed becomes
Vi/Va ~ (7/8)/In Ry ~ 0.01 — 0.1, nearly independent of R,,. The time
scale of reconnection (and energy release) is 10 — 100t 4 which is exactly the
observed time scale of solar flares. Although this model (called Petschek
model) is very successful and has been considered to be the most promising
model for solar flares, there are still some basic questions: (1) The Petschek
model is not based on an exact solution of the resistive MHD equation, but
on an approximate solution. Is the Petschek model a real solution of the
resistive MHD equation? (2) If the origin of resistivity is Coulomb collisions
(i.e., Spitzer resistivity), the length of diffusion region must be less than 1
cm to explain solar flares! (Note that the typical flare size is 10° cm.) Is
it really true that such a small single diffusion region controls the entire
flare process? In order to answer the first question, people had to await the
development of computers.

3. Numerical Simulations of Magnetic Reconnection

Ugai and Tsuda (1977) first numerically solved the time dependent resistive
MHD equation in 2D space. They assumed a locally enhanced resistivity
(which is spatially and temporally fixed in a current sheet), and followed
the subsequent evolution of magnetic field and plasma dynamics caused
by the locally enhanced resistivity. They found that the solution is very
similar to the Petschek model, i.e., they found appearance of reconnection
jet with Alfven speed, a pair of slow shocks, and logarithmic dependence
of reconnection rate on R,,.

Sato and Hayashi (1979) studied similar problem with different assump-
tion; they assumed strong inflow from the side boundaries which drives the
reconnection. They also assumed non-fixed resistivity that depends on cur-
rent density such that n = no(j —jc)? (for j > jc), and n =0 (for j < je),
mimicing the anomalous resistivity caused by plasma turbulence. They
again found that the resulting solution is similar to the Petschek model,
and proposed that ezternal driving is essential to induce (Petschek type)
fast reconnection. At this stage, it is clear that the Petschek model is a
real solution of the resistive MHD equation under some special condition.
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However, a fundamental question is remained; what is the condition of the
(Petschek type) fast reconnection? Is it external driving or locally enhanced
resistivity such as anomalous resistivity?

There were some controversies about this question. Biskamp (1986)
studied the same problem but assuming uniform resistivity, and found that
the external driving does not lead to the Petschek type fast reconnection.
Instead, he found only the Sweet-Parker solution in his numerical simula-
tions. On the basis of these simulation results, he criticized the Petschek
model (Biskamp 1993). Priest and Forbes (1992), on the other hand, con-
structed a unified reconnection theory using analytical but approximate
method, and demonstrated that the external boundary condition for inflow
is essential for determining whether reconnection is fast or slow.

However, many self-consistent resistive MHD numerical simulations
(Ugai 1986, Scholer 1989, Yan et al. 1992, Yokoyama and Shibata 1994)
have shown that the fast reconnection (Petschek type reconnection) is real-
ized only when the locally enhanced resistivity such as anomalous resistivity
is assumed. Namely, if uniform resistivity is assumed, only the slow recon-
nection (Sweet-Parker reconnection) is realized irrespective of any external
driving at the inflow boundary condition. *

This notion is important especially when the reconnection model is ap-
plied to actual solar flares and magnetospheric substorms using numerical
simulations. If one assumes uniform resistivity, one would not find (global)
slow shocks inherent to Petschek type reconnection. If such simulation re-
sults are applied to flares and substorms, one might predict that no slow
shocks would be found in flares and substorms. But actually slow shocks
have been found in the geotail current sheet during substorms (Saito et al.
1995).

It should be also mentioned that ideal MHD numerical simulations often
lead to violent fast reconnection due to numerical resistivity. For example,
according to our own experience, the “ideal MHD simulation” of recon-
nection using modified Lax-Wendroff scheme lead to (nonsteady) Petschek
type reconnection. In this scheme, the numerical resistivity is spatially non-
uniform and is similar to anomalous resistivity. It is interesting to note that
the ideal MHD case (or the least resistive case in an exact sense) leads to
the most violent magnetic reconnection (Yokoyama and Shibata 1994). Of
course, the type of numerical resistivity strongly depends on the numerical
scheme. Karpen et al. (1998) numerically simulated solar flares with FCT

10f course, these are results of numerical simulations at the present stage, whose nu-
merical magnetic Reynolds number is at most 10% —10* in a uniform grid. Biskamp (1998,
private communication) conjectures that even a uniform resistivity case may generate ef-
fective turbulent anomalous resistivity leading to fast reconnection. However, this is only
a conjecture at the present stage. No one knows at what numerical magnetic Reynolds
number we can get such fast reconnection under a uniform resistivity.
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scheme assuming ideal MHD equation, and obtained the results very simi-
lar to those found for uniform resistivity case. This is probably because of
nearly uniform numerical resistivity in a dicontinuous layer (current sheet)
in FCT scheme. MOCCT scheme often lead to explosive reconnection in a
current sheet in ideal MHD numerical simulations (e.g., Hawley and Stone
1995, Kudoh et al. 1998). In such explosive case, however, the total energy
is not conserved, so that numerical results cannot be applied to any physical
problems. In summary, to use ideal MHD numerical simulations for recon-
nection problems is somewhat dangerous unless we should be well aware
of the properties of numerical scheme. We recommend people to use resis-
tive MHD equations with physical resistivity term (larger than numerical
resistivity) if their MHD problems include reconnecting current sheets.

4. Numerical Modelings of Solar Flares and Their Role in Inter-
pretating New Observations of Flares

Before launch of Yohkoh in 1991, solar physicists have sometimes doubted
the reconnection model since there were not enough observational evi-
dence of reconnection. Now the situation has dramatically changed be-
cause a wealth of observational evidence of reconnection has been discovered
through Yohkoh X-ray observations (see the review by e.g. Shibata 1996).
It must be stressed that during the course of analysis and interpretation of
Yohkoh data, the numerical simulations of magnetic reconnection played
a very important role as listed in the following examples of observational
evidence of reconnection discovered by Yohkoh.

(1) Cusp-shaped flare loops: Although the cusp-shaped magnetic
field configuration was predicted by CSHKP model (Carmichael-Sturrock-
Hirayama-Kopp-Pneuman), the numerical simulations by Ugai (1987),
Forbes and Malherbe (1991), Magara et al. (1996) were extremely useful
to understand physics of reconnection. Tsuneta et al. (1992, 1996) discov-
ered that outer regions of cusp-loops have systematically higher tempera-
ture, which have been predicted by the reconnection model. More recently,
Yokoyama and Shibata (1998) succeeded to develop a model of flares in-
cluding reconnection, heat conduction, and chromospheric evaporation, and
reproduced observed temperature distribution in cusp-shaped loops.

(2) Loop top hard X-ray sources: Masuda et al. (1994) discovered a
hard X-ray source well above the top of the soft X-ray flare loop, which in-
dicated that energy release occurred outside of the soft X-ray flare loop. In
interpreting this observation, numerical simulations of Ugai (1987) played a
leading role, since the simulation clearly showed the appearance of the fast
shock above the reconnected loop. Hence Masuda et al. (1994) interpreted
that the loop top hard X-ray source may correspond to the very hot region
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just behind the fast shock, and they indeed found that the observed tem-
perature is consistent with the theoretically predicted temperature behind
the fast shock.

(3) X-ray plasmoid ejections: On the basis of numerical simulations
of reconnection, Shibata et al. (1995) conjectured that if the impuslive flares
are caused by the reconnection, the plasmoid ejections would be found
high above the main flare loop (reconnected loop). They indeed discovered
plasmoid ejections in many compact impulsive flares. Magara et al. (1997)
developed a numerical simulation model explaining the observed motion of
X-ray plasmoids analyzed by Ohyama and Shibata (1997).

(4) X-ray jets: Yohkoh discovered many jet-like mass ejections in the
solar corona (Shibata et al. 1992b, Shimojo et al. 1996). Shibata et al.
(1992b) proposed the magnetic reconnection model for these X-ray jets,
and Yokoyama and Shibata (1995, 1996) carried out extensive numerical
simulations of reconnection occurring between emerging flux and coronal
field to construct a model of X-ray jets (Fig. 1 and CD-ROM for movies).
They successfully reproduced observed properties of X-ray jets, and pre-
dicted the coexistence of hot X-ray jets and cool Ha jets (surges). The
latter has been confirmed observationally by Canfield et al. (1996).

5. Summary

MHD reconnection model successfully explained Yohkoh observations, such
as cusp-shaped flares, loop top hard X-ray sources, X-ray plasmoid ejec-
tions, and X-ray jets. On the basis of these solar studies, the reconnection
model has been applied also to protostellar flares (Hayashi et al. 1996) and
“galactic flares” (Tanuma et al. 1998).

There remains some fundamental questions, i.e., origin of resistivity
and particle acceleration mechanism, both of which are closely related mi-
croscopic physics of reconnection such as non-MHD effects (e.g., Hoshino
1998). The former is related also to macroscopic turbulence (e.g., Biskamp
1994, Nordlund 1998). Another important remaining question is the pre-
flare energy build-up; how the magnetic energy is accumulated in the solar
atmosphere? Is it due to photospheric shear flow (e.g., Kusano 1998) or
emergence of twisted flux tubes (e.g., Matsumoto et al. 1998)?

Consequently, future subjects for numerical astrophysicists are: (1) 3D
MHD modeling of flares (e.g., emergence of twisted flux tubes and resulting
3D reconnection). (2) To develop adaptive mesh MHD code. This is neces-
sary to resolve thin current sheet in high R,, plasma which has probably a
fractal structure (Tajima and Shibata 1997). Note again that Ljjare =~ 10°
cm 3> Tion, Larmor = 100 cm, the latter being the typical scale of anomalous
resistivity. (3) To develop numerical code including both MHD and non-
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(C) CoolJet ot Jet

Fast Shock
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Figure 1.  MHD numerical simulation of magnetic reconnection model for X-ray jets
(from Yokoyama and Shibata 1995, 1996). This is an extension of the simulation by
Shibata et al. (1992a). (a) Two-sided-loop type, in which the initial coronal field is hor-
izontal. (b) Anemone-jet type, in which the initial coronal field is oblique. Both figures
show temperature distribution (grey scale; darker region is hotter), magnetic field lines
(lines), and velocity vectors. The unit of length is ~ 200 km. The velocity of the hot jet
is about 0.3 — 1.0 in unit of coronal Alfven speed Vi, cor (~ 1000 km/s). (c) Schematic
illustration of physical processes found from numerical simulations.
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MHD (kinetic) effects for a spatial scale ranging from 1 cm to 10° cm to
construct self-consistent flare model.

Numerical computations were carried out on VPP300/16R at NAOJ.
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